期刊文献+

一类带阻尼项的p-Laplace系统的多重周期解

Multiplicity of Periodic Solutions for a Class of p-Laplacian Systems with Damped Vibration
下载PDF
导出
摘要 利用临界点理论研究带阻尼项的p-Laplace系统周期解的存在性.在具有部分周期位势时,根据广义鞍点定理,得到系统多重周期解存在的充分条件,推广了已有文献的结果. By using critical point theory, the authors studied the existence of periodic solutions for p-Laplace system with damped vibration and partially periodic potential. Some sufficient conditions for existence of multiplicity of periodic solutions are obtained via the generalized saddle point theorem, which generalize the existing resuls.
作者 张申贵 刘华
出处 《应用数学》 CSCD 北大核心 2015年第4期811-819,共9页 Mathematica Applicata
基金 国家自然科学基金(31260098) 西北民族大学中央高校基本科研业务费专项资助(31920130004)
关键词 周期解 p-Laplace系统 临界点 Periodic solution p-Laplazian system Critical point
  • 相关文献

参考文献3

二级参考文献8

  • 1Wu Xingping. Periodic Solution of nonautomous second order system with bounded nonlinearity. J Math Anal Appl, 1999, 230: 135:141. ".
  • 2Tang Chunlei. A note on Periodic solutions of second order systems. Proc Amer Math Soc, 2003, 132: 1295-1393.
  • 3Zhang Xingyong, Tang Xianhua. Periodic solutions for an p-Laplacian system. Tai- wanese Journal of Mathematics, 2011, 3: 1369-1396.
  • 4Tang Xianhua, Xiao Li. Homoclinic solutions for a class of second order Hamiltonian systems. Nonlinear Anal, 2009, 71(3): 1140-1151.
  • 5Liu Jiaquan. A generalized saddle point theorem. 3 Differential Equations, 1989, 82: 372-385.
  • 6Mawhin J, Willem M. Critical point theory and Hamiltonian systems. New York: Springer-Verlag, 1989.
  • 7张申贵.一类非自治二阶系统的多重周期解[J].山东大学学报(理学版),2011,46(11):64-69. 被引量:6
  • 8Mohsen Timoumi.Multiple Periodic Solutions for Some Classes of First-Order Hamiltonian Systems[J].Applied Mathematics,2011,2(7):846-853. 被引量:6

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部