期刊文献+

子带算子的界估计(英文)

The Bounds of Sub-band Operators
下载PDF
导出
摘要 本文给出d带双正交小波子带算子的定义,通过发展d-循环矩阵理论,得到子带算子的界就是循环矩阵谱半径的极限以及子带算子的界估计,并且通过实例来验证得到的结论. A concept of sub-band operator is introduced, a d-circular matrix method is developed and the exact bounds of the sub-band operators are obtained. An example is provided to illustrate the proposed results in this paper.
出处 《应用数学》 CSCD 北大核心 2015年第4期900-908,共9页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China(11171103) the Hunan Education Office Science Foundation of China(13C624) the Construction Program of the Key Discipline in Hunan University of Arts and Science-Applied Mathematics
关键词 子带算子 循环矩阵 多带小波 界估计 双正交性 Sub-band operator Circular matrix Multi-band wavelet Bounds estimate Biorthogonality
  • 相关文献

参考文献2

二级参考文献26

  • 1Cohen A*Daubechies I,Feauveau J C. Biorthogonal bases of compactly supported wavelets[J]. Comm, onPure and Applied Math.,1992,45:485-560.
  • 2Chui C K,Lian J A. Construction of compactly supported symmetric and antisymmetric orthonormalwavelets with scale=3[J]. J. Appl. Comput. Harmon. Anal.,1995,2:68-84.
  • 3BI Ning, DAI Xinrong, SUN Qiyu. Construction of compactly supported M-band waveelets[J]. Appl.Comput. Harmonic Anal. ,1999,6:113-131.
  • 4Karoui A. Wavelet bases with a general integer dilation factor d.^2 and better regularity properties[J].Appl. Math. Comput. ,2009,214(2) :557-568.
  • 5JIANG Qingtang. Symmetric paraunitary matrix extension and parametrization of symmetric orthogonalmultifilter banks[J]. Siam J. Matrix Anal. Appl.,2001,23 :167-186.
  • 6WANG Guoqiu. Matrix methods of constructing wavelet filters and discrete hyper-wavelet transforms[J]* Optical Engineering,2000,39-.1080-1087.
  • 7HAN Bin. Symmetric orthonormal scaling functions and wavelets with dilation factor 4[J]. Adv. Comput.Math. ,1998,8 :221-247.
  • 8HAN Bin, ZHANG Xiaosheng. Matrix extension with symmetry and its application to symmetric or-thonormal multiwavelets[J]. SIAM J. Math. Anal. ,2010.42 (5) :2297-2317.
  • 9Daubechies I. Ten lectures on wavelets[M]. Philadelphia: SIAM Pub., 1992.
  • 10Cohen A, Daubechies I, Feauveau J C. Biorthogonal bases of compactly supported wavelets [J],Comm, on Pure and Applied Math., 1992, 45: 485-560.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部