期刊文献+

具有吸收项和边界流的非牛顿渗流方程组整体存在解的临界超曲面问题(英文)

Critical Hypersurface to Non-Newtonian Filtration Equations with Absorption and Boundary Fluxes
下载PDF
导出
摘要 在本文中,我们研究一类具有吸收项和耦合边界流的非牛顿渗流方程组问题.通过应用比较原理和构造自相似形式的上、下解,得到整体存在解的临界超曲面以及Fujita爆破指标结果.这些结果完善了发表在"Differential Integral Equations,2014,27:643―658"中的临界爆破Fujita吸收指标问题. This paper deals with non-Newtonian filtration equations with inner absorption, coupled via nonlinear boundary flux. The critical global existence hypersurface and the critical Fujita values separating the region where all nontrivial solutions blow up from the one where there are both blow-up and global solutions are obtained by using self-similar super-solutions and subsolutions, which complete the so called critical Fujita absorption exponent of the published paper (Differential Integral Equations,2014, 27: 643-658).
出处 《应用数学》 CSCD 北大核心 2015年第4期917-924,共8页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China(11201483) the Fundamental Research Funds for the Central Universities
关键词 非牛顿渗流方程组 吸收项 临界整体存在超曲面 Non-Newtonian filtration equations Absorption Critical hypersurface
  • 相关文献

参考文献15

  • 1Astrita G, Marrucci G. Principles of Non-Newtonian Fluid Mechanics[M]. New York: McGraw-Hill, 1974.
  • 2CUI Zejian. Critical curves of the non-Newtonian polytropic filtration equations coupled with nonlinear boundary conditions Pl. Nonlinear Analysis, 2008, 68(1O}: 3201-3208.
  • 3Diaz J I, Kersner R. On the behaviour and cases of nonexistence of the free boundary in a semibounded porous medium[J]. J. Math. Anal. Appl., 1998, 132(1}: 281-289.
  • 4Gilding B H, Kersner R. The characterization of reaction-convection-diffusion processes by travelling waves Pl. J. Differential Equations, 1996, 124(1}: 27-79.
  • 5JIN Chunhua, YIN Jingxue, ZHENG Sining. Critial Fujita absorption exponent for the evolutionary]r Laplacian with inner absorption and boundary flux Pl. Differential Integral Equations, 2014, 27(7/8}: 643-658.
  • 6Kalashnikov A S. On the equations of the type of nonstationary filtration with finite velocity of propagation of perturbances[J]. Vestnik Moskov. Univ. Ser. I Mat.Meh., 1972, 6(3}: 45-49.
  • 7Kalashnikov A S. On a Nonlinear Equation Appearing in the Theory of Non-stationary Filtration[M]. Moscov: Trudy Seminara, 1978.
  • 8Lee K A, Petrosyan A, Vazquez J L. Large-time geometric properties of solutions of the evolution p-Laplacian equation[J]. J. Differenal. Equations, 2006, 229(2}: 389-411.
  • 9Oleinik 0 A, Kalasnikov A S, Czou Y L. The Cauchy problem and boundary problems for equations of the type of non-ststionary filtration [J]. Izv. Akad. Navk SSSR. Ser. Mat., 1958, 22f2): 667-704.
  • 10Peletier L A. A necessary and sufficient condition for the existence of an interface in flows through porous media [J]. Arch. Rational Mech. Anal., 1975, 56f1): 183-190.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部