期刊文献+

具有时滞和Holling-Ⅱ功能反应的捕食系统的持久性和渐近周期解(英文) 被引量:2

Permanence and Asymptotically Periodic Solution of a Delayed Predator-prey System with Holling-type Ⅱ Functional Response
下载PDF
导出
摘要 本文研究具有时滞和Holling-II功能反应的捕食系统.运用微分不等式理论,得到系统具有持久性的充分条件.通过构造适当的李雅普偌夫函数,我们得到系统具有唯一的全局渐近稳定的周期解.最后给出简单结论. This paper is concerned with a delayed predator-prey system with Holling- type Ⅱ functional response. By using the differential inequality theory, a set of sufficient conditions are obtained for the permanence of the system. By constructing a suitable Liapunov function, we derive that the system has a unique asymptotically periodic solution which is globally asymptotically stable. The paper ends with a brief conclusion.
出处 《应用数学》 CSCD 北大核心 2015年第4期925-932,共8页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China(11261010,11101126) the Natural Science and Technology Foundalion(J[2015]2025)
关键词 捕食系统 持久性 Holling-II功能反应 渐近周期解 李雅普偌夫函数 Predator-prey system Permanence Holling-type Ⅱ functional response Asymptotically periodic solution Liapunov function
  • 相关文献

参考文献10

  • 1LI Yongkun, YE Yuan. Multiple positive almost periodic solutions to an impulsive non-autonomous Lotka-Volterra predator-prey system with harvesting terms[J]. Commun. Nonlinear Sci. Numer. Simul., 2013, 18(11): 3190-320l.
  • 2WANG Linlin, FAN Yonghong. Multiple periodic solutions for a non-autonomous delayed predatorprey model with harvesting terms[J]. Appl. Math. Comput., 2011, 217(23): 9552-956l.
  • 3DAI Binxiang, LI Ying, LUO Zhenguo. Multiple periodic solutions for impulsive Gause-type ratiodependent predator-prey systems with non-monotonic numerical responses[J]. Appl, Math. Comput., 2011, 217(18): 7478-7487.
  • 4YANG Yu, CHEN Wencheng. Uniformly strong persistence of an nonlinear asymptotically periodic multispecies competition predator-prey system with general functional response[J]. Appl. Math. Comput., 2006, 183(1): 423-426.
  • 5WEI Fengying, WANG Ke. Uniform persistence of asymptotically periodic multispecies competition predator-prey systems with Holling III type of functional response[J]. Appl, Math. Comput., 2005, 170(2): 994-998.
  • 6Kar T K, Batabyal A. Stability and bifurcation of a prey-predator model with time delay[J]. C. R. Biologies, 2009, 332: 642-65l.
  • 7XU Rui, CHEN Lansun, HAO Feilong. Periodic solutions of an n-species Lotka- Volterra type foodchain model with time delays[J]. Appl, Math. Comput., 2005, 171(1}: 511-530.
  • 8J M Cushing, Periodic time-dependent predator-prey system[J]. SIAM J. Appl. Math., 1977, 32(1): 82-95.
  • 9Montes F de Oca, Vivas M. Extinction in a two dimensional Lotka- Volterra sysstem with infinite delay[J]. Nonlinear Anal.: Real World Appl., 2006, 7(5}: 1042-1047.
  • 10YUAN Rong. Existence of almost periodic solutions of functional differential equations of neutral type[J]. J. Math. Anal. Appl. ,1992, 165(2}: 524-538.

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部