期刊文献+

Poisson跳的随机延迟微分方程Heun方法的均方收敛性 被引量:2

Mean-square Convergence of Heun Method for Stochastic Delay Differential Equation with Poisson Jumps
下载PDF
导出
摘要 Heun方法是一类求解随机延迟微分方程的数值方法,本文试图研究Poisson跳的随机延迟微分方程Heun方法的均方收敛性.当Poisson跳的随机延迟微分方程满足一定约束条件时,获得Heun方法求解方程所得的数值解收敛于真解,且均方收敛阶为1的理论结果2.文末数值试验的结果验证了理论结果的正确性. Heun method is a significant numerical method for solving stochastic delay differential equations, and this paper deals with the convergence of Heun method for stochastic delay differential equations with Poisson jumps. It is proved that the numerical solutions of Heun method converge to the 1/2 when the stochastic delay differential equations with Poisson jumps true solution in mean square order ~ , satisfy certain constraints. Results of Numerical experiments in the end verify the theoretical results.
出处 《应用数学》 CSCD 北大核心 2015年第4期938-948,共11页 Mathematica Applicata
基金 国家自然科学基金(11271311 11171352) 湖南省教育厅重点项目(14A146)
关键词 随机延迟微分方程 Heun方法 POISSON跳 均方收敛 Stochastic delay differential equation Heun method Poisson jump Mean square convergence
  • 相关文献

参考文献14

  • 1Kloeden P E, Platen E. Numerical Solution of Stochastic Differential Equations[M]. Berlin: SpringerVerlag, 1992.
  • 2Milstein G N, Tretyakov M V. Stochastic Numerics for Mathematical Physics[M]. Berlin: SpringerVerlag, 2004.
  • 3MAO X. Stochastic Differential Equations and Applications[M]. Chichester: Horwood Publishing, 2007.
  • 4Higham D J. An algorithmic introduction to numerical simulation of stochastic differential equations[J]. SIAM review, 2001, 43(3): 525-546.
  • 5谭英贤,甘四清,王小捷.随机延迟微分方程平衡方法的均方收敛性与稳定性[J].计算数学,2011,33(1):25-36. 被引量:5
  • 6WANG L , MEl C, XUE H. The semi-implicit Euler method for stochastic differential delay equation with jumps[J]. Applied Mathematics and Computation, 2007, 192(2): 567-578.
  • 7WEI M. Convergence of numerical solutions for variable delay differential equations driven by Poisson random jump measure[J]. Applied Mathematics and Computation, 2009, 212(2}: 409-417.
  • 8JIANG F, SHEN Y, LIU L. Taylor approximation of the solutions of stochastic differential delay equations with Poisson jump[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(2}: 798-804.
  • 9LI R, MENG H, DAI Y. Convergence of numerical solutions to stochastic delay differential equations with jumps[J]. Applied mathematics and computation, 2006, 172(1}: 584-602.
  • 10Jacob N, WANG Y, YUAN C. Numerical solutions of stochastic differential delay equations with jumps[J]. Stochastic Analysis and Applications, 2009, 27(4): 825-853.

二级参考文献32

  • 1王文强,黄山,李寿佛.非线性随机延迟微分方程Euler-Maruyama方法的均方稳定性[J].计算数学,2007,29(2):217-224. 被引量:10
  • 2Buckwar E. Introduction to the numerical analysis of stochastic delay differential equations[J]. J. Comput. Appl. Math., 2000, 125: 297-307.
  • 3Buckwar E. One-step approximatons for stochastic functional differential equations[J]. Appl. Num. Math., 2006, 56: 667-681.
  • 4Gichman I I , Skorochod A V. Stochastic Differential Equations[M]. Russion: Naukova Dumka, Kiew, 1973.
  • 5Mao X R. Stochastic Differential Equations and Their Applications[M]. New York: Horwood Publishing, 1997.
  • 6Alcock J, Burrage K. A note on the balanced method[J]. BIT., 2006, 46: 689-710.
  • 7Milstein G, Platen E, Schurz H. Balanced implicit methods for stiff stochastic systems[J]. SIAM J. Numer. Anal., 1998, 35: 1010-1019.
  • 8Saito Y and Mitsui T. Stability analysis of numeric schemes for stochastic differential equations[J]. SIAM J. Numer. Anal., 1996, 33:2254-2267.
  • 9Zhang H M, Gan S Q. Mean square convergence of one-step methods for neutral stochastic differential delay equations[J]. Appl. Math. Comput., 2008, 204: 884-890.
  • 10Liu M Z, Cao W R, Fan Z C. Convergence and stability of the semi-implicit Euler method for a linear stochastic differential delay equation[J]. J. Comput. Appl. Math., 2004, 170: 255-268.

共引文献11

同被引文献11

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部