摘要
Heun方法是一类求解随机延迟微分方程的数值方法,本文试图研究Poisson跳的随机延迟微分方程Heun方法的均方收敛性.当Poisson跳的随机延迟微分方程满足一定约束条件时,获得Heun方法求解方程所得的数值解收敛于真解,且均方收敛阶为1的理论结果2.文末数值试验的结果验证了理论结果的正确性.
Heun method is a significant numerical method for solving stochastic delay differential equations, and this paper deals with the convergence of Heun method for stochastic delay differential equations with Poisson jumps. It is proved that the numerical solutions of Heun method converge to the 1/2 when the stochastic delay differential equations with Poisson jumps true solution in mean square order ~ , satisfy certain constraints. Results of Numerical experiments in the end verify the theoretical results.
出处
《应用数学》
CSCD
北大核心
2015年第4期938-948,共11页
Mathematica Applicata
基金
国家自然科学基金(11271311
11171352)
湖南省教育厅重点项目(14A146)