期刊文献+

基于FLUENT的等离子弧与熔池一体化数值模拟

Numerical Simulation on Plasma Arc and Weld Pool Integration Based on FLUENT
下载PDF
导出
摘要 以计算流体力学和麦克斯韦电磁场理论建立了等离子弧和熔池一体化的数学模型,综合考虑了电弧电子移动传热和工件表面的辐射传热、金属的熔化凝固和液态金属的蒸发以及熔池内金属的对流传热等对工件温度分布的影响,计算得出阳极表面与电弧之间能量、电流密度等参数的传递关系,并分析了工件温度场和熔池在整个焊接过程中的瞬态变化情况。结果表明:阳极表面的热流密度和电流密度分布近似符合高斯分布;上表面熔池形状由焊接初期的圆形逐渐变为椭圆形;准稳态时熔池横断面为典型的酒杯状。通过与文献计算值的对比,验证了所建立模型的合理性。 A mathematical model for plasma arc and molten pool integration was set up according to the theory of computational fluid dynamics and Maxwell's theory. The effects of all the heat transfer caused by electron flow and radiation loss from the workpiece surface, the melting and solidification of the metal and the vaporization and convection heat transfer of the melted metal on the temperature distribution of workpiece were taken into account. The relationship of the energy, the current density, etc. from the arc to the anode surface was calculated. Then, the transient conditions of the temperature distribution and the molten pool shape during the whole welding process were obtained. The results show that the heat flux and current density distribution on the anode surface both approximate to Gaussian distribution. The molten pool shape on upper surface gradually changes from circular to oval and the shape on the cross-section in the quasi-steady state is wine glass-shape. The soundness of the model was verified by the calculated values from the literature.
出处 《热加工工艺》 CSCD 北大核心 2015年第19期209-212,215,共5页 Hot Working Technology
基金 国家自然科学基金项目(51044001) 国家级大学生创新训练项目(AH201310360039) 大学生科研训练计划(SRTP)重点项目(2013046Z)
关键词 等离子弧 熔池 一体化 数值模拟 FLUENT plasma arc molten pool integration numerical simulation FLUENT
  • 相关文献

参考文献7

  • 1Keanini Russell G, Rubinsky Boris. Three-dimensional simulation oftheplasmaarcweldingprocess [J]. IntemationalJoumalofHeat and Mass Transfer, 1993,36( 13 ): 3283-3298.
  • 2刘望兰,胡绳荪,马立.三维静态锥体热源穿孔等离子弧焊接熔池的数值模拟[J].焊接学报,2006,27(6):33-36. 被引量:4
  • 3Freton P, Gonzalez J J, Gleizes A. Comparison between a two- and a three-dimensional arc plasma configuration [J]. Journal of Physics D (Applied Physics), 2000,33(19): 2442-2452.
  • 4MurphyAB, ArundellCJ. Transportcoefficients of argon, Nitrogen, oxygen, argon-nitrogen and argon-oxygen plasmas [J].Plasma Chem. Plasma Process. , 1994,14(4): 451-490.
  • 5武传松.焊接热过程与熔池形态[M].北京:机械工业出版社,2007.
  • 6BiniR, MonnoM, BoulosMI. Numericalandexperimentalstudy of transferred arcs in argon [J]. Journal of Physics D (Applied Physics),2006,39(15): 3253-3266.
  • 7李力,胡绳荪,殷凤良,马立.等离子弧焊接熔池温度场的三维数值模拟[J].天津大学学报,2007,40(10):1260-1264. 被引量:11

二级参考文献14

  • 1Yongping LEI,Xianghua GU,Yaowu SHI.Numerical Analysis of Two-Way Interaction between Weld-Pool and Arc for GTA Welding Process[J].Journal of Materials Science & Technology,2001,17(1):171-172. 被引量:1
  • 2雷卡林 徐碧宇译.焊接热过程计算[M].北京:机械工业出版社,1958..
  • 3陈焕明,江淑园,谢美蓉.穿孔等离子弧焊熔池形成过程的仿真[D].江西:南昌航空工业学院,2003.
  • 4Hsu Y F,Rubinsky B.Two-dimensional heat transfer study on the keyhole plasma arc process[J].International Journal of Heat and Mass Transfer,1988,31 (7):1409-1421.
  • 5Keanini Russell G,Rubinsky Boris.Three-dimensional simulation of the plasma arc welding process[J].International Journal of Heat and Mass Transfer,1993,36(13):3283-3298.
  • 6Fan H G,Kovacevic R.Keyhole formation and collapse in plasma arc welding[J].Journal of Physics D (Applied Physics),1999,32 (22):2902-2909.
  • 7Hsu K C,Pfender E.Two-temperature modeling of the free-burning high-intensity arc[J].Journal of Applied Physics,1983,54 (8):4359-4366.
  • 8Manabu Tanaka,Masao Ushio,John J Lowke.Numerical study of gas tungsten arc plasma with anode melting[J].Vacuum,2004,73 (3/4):381-389.
  • 9Choo R T C,Szekely J,David S A.On the calculation of the free surface temperature of gas-tungsten-arc weld pools from first principles(Part Ⅱ):Modeling the welding pool and comparison with experiments[J].Metallurgical Transaction,1992,23B (7):371-384.
  • 10代大山,宋永伦,江伟,张慧,朱轶峰,董春林.小孔等离子弧焊接质量控制的研究概况及发展[J].焊接技术,2000,29(6):2-4. 被引量:11

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部