期刊文献+

基于小波变换与SVM的ADHD病人分类 被引量:5

Classification Based Wavelet Translate and SVM in the ADHD
下载PDF
导出
摘要 提出基于小波变换的特征提取方法对ADHD病人进行分类研究。采用115名ADHD-200的竞赛静息态功能磁共振数据,首先提取了90个脑区的平均时间序列信号,然后利用小波变换多分辨率分析特性对信号进行3层分解;计算了各个尺度下小波系数的能量值,对能量值进行归一化处理后,将其作为分类特征向量;最后结合SVM分类器采用留一交叉验证法对ADHD病人进行分类。结果表明该方法有助于ADHD病人的分类与诊断。 In this study, we propose an approach to extract features based wavelet transform for the ADHD classification. One hundred and fifteen subjects' resting state fMRI data were adopted, which come from ADHD-200 competition. We first extracted the time series of ninety brain areas, and decomposed them into three levels using the wavelet transform for each subject. Secondly, the energy values of any scale were computed and normalized, which construct the classification feature vectors. Finally, we combined the SVM to classification in the ADHD based leave-one-out cross validation. The results demonstrate that the wavelet transform feature extract approach is useful in classification and diagnosis for ADHD.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2015年第5期789-794,共6页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(81473337) 国家社会科学基金(13BZJ032) 四川省应用基础项目(2013JY0189)
关键词 注意缺陷与多动 机器学习 支持向量机 小波变换 attention deficit/hyperactivity disorder machine learning support vector machine wavelet-translate
  • 相关文献

参考文献15

  • 1POLANCZK G, DE LIMA M S, HORTA B L, et al. The worldwide prevalence of ADHD: a systematic review and metaregression analysis[J]. Am J Psychiatry, 2007, 164(6): 942-948.
  • 2SELLERS R, MAUGHAN B, PICKLES A, et al. Trends in parent and teacher rated emotional, conduct and ADHD problems and their impact in prepubertal children in Great Britain: 1999-2008[J]. Journal of Child Psychology and Psychiatry, 2015, 56(1): 49-57.
  • 3ANURADHA J, RAMACHANDRAN V, ARULALAN K V, et al. Diagnosis of ADHD using SVM algorithm[C]// Proceedings of the Third Annual ACM Bangalore Conference. [S.1.]: ACM, 2010.
  • 4GUO X, AN X, KUANG D, et al. ADHD-200 Classification based on social network Method[C]//Intelligent Computing in Bioinformatics. Taiyuan, China: Springer International Publishing, 2014: 233-240.
  • 5AMIN H U, MALIK A S, AHMAD R F, et al. Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques[J]. Australasian Physical & Engineering Sciences in Medicine, 2015, 38(1): 139-149.
  • 6张晓文,杨煜普,许晓鸣.基于小波变换的特征构造与选择[J].计算机工程与应用,2003,39(19):25-28. 被引量:14
  • 7MITCHELL T M. Learning to decode cognitive states from brain images[J]. Machine Learning, 2004, 57(1-2): 145-175.
  • 8WEI Liao. Altered functional connectivity and small-world in mesial temporal lobe epilepsy[J]. PLoS One, 2010, 5(1): e8525.
  • 9成谢锋,杨贺.5种小波在心音信号处理中的分析与比较[J].南京邮电大学学报(自然科学版),2015,35(1):38-46. 被引量:6
  • 10JIAG Y E,LIN Y P. Error Estimation of INS ground alignment through observability analysis[J]. IEEE Transactions on Aerospace and Electronic Sstems, 1992, 28(1): 92-97.

二级参考文献40

  • 1周静,杨永明,何为.心音信号的分析及其特征提取方法的研究[J].中国生物医学工程学报,2005,24(6):685-689. 被引量:40
  • 2赵继印,刘海英,马洪顺,周怀得.基于coif5小波的多普勒胎心音信号提取算法的研究[J].中国生物医学工程学报,2006,25(5):538-541. 被引量:10
  • 3S Pittner,S V Kamarthi.Feature Extraction From Wavelet Coefficients for Pattern recognition Tasks[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 1999; 21 ( 1 ) : 83-88.
  • 4I N Tansel,C Mekdeci,C McLaughlin.Detection of Tool Failure in End Milling with Wavelet Transformations and Neural Networks(WTNN)[J].Int'l J Machine Tools and Manufacture, 1995;35:1137-1147.
  • 5T Kalayci,O Ozdamar.Wavelet Preprocessing for Automated Neural Network Detection of EEG Spikes[J].IEEE Eng In Medicine and Biology, 1995 ; 14 : 160-166.
  • 6Englehart K.Signal Representation for Classification of the Transient Myoelectric Signal[D].Ph D Thesis.University of New Brunswick, 1998.
  • 7Fukunage K.Introduction to Statistical Pattern Recognition[M].2nd Ed, San Diego, CA : Academic Press, 1990.
  • 8O Rioul,M Vetterli.Wavelets and Signal Processing[J].ASSP Magazine, 1991 : 14-38.
  • 9M J Shensa.The Discrete Wavelet Transform:Wedding the A-Trous and Mallat Algorithms[J].IEEE Trans on Singal Processing, 1992 ;40 (10) : 2464~2478.
  • 10Mallat S,S Zhong.Wavelet transform maxima and muhiscale edges. Wavelets and their Applications,Boston,1992.

共引文献79

同被引文献25

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部