摘要
提出基于小波变换的特征提取方法对ADHD病人进行分类研究。采用115名ADHD-200的竞赛静息态功能磁共振数据,首先提取了90个脑区的平均时间序列信号,然后利用小波变换多分辨率分析特性对信号进行3层分解;计算了各个尺度下小波系数的能量值,对能量值进行归一化处理后,将其作为分类特征向量;最后结合SVM分类器采用留一交叉验证法对ADHD病人进行分类。结果表明该方法有助于ADHD病人的分类与诊断。
In this study, we propose an approach to extract features based wavelet transform for the ADHD classification. One hundred and fifteen subjects' resting state fMRI data were adopted, which come from ADHD-200 competition. We first extracted the time series of ninety brain areas, and decomposed them into three levels using the wavelet transform for each subject. Secondly, the energy values of any scale were computed and normalized, which construct the classification feature vectors. Finally, we combined the SVM to classification in the ADHD based leave-one-out cross validation. The results demonstrate that the wavelet transform feature extract approach is useful in classification and diagnosis for ADHD.
出处
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2015年第5期789-794,共6页
Journal of University of Electronic Science and Technology of China
基金
国家自然科学基金(81473337)
国家社会科学基金(13BZJ032)
四川省应用基础项目(2013JY0189)
关键词
注意缺陷与多动
机器学习
支持向量机
小波变换
attention deficit/hyperactivity disorder
machine learning
support vector machine
wavelet-translate