期刊文献+

不同锰源对富锂正极材料Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2性能的影响 被引量:3

Electrochemical Characteristics of Li-Rich Cathode Material Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2 with Different Manganese Raw Materials
原文传递
导出
摘要 采用MnCO3或MnO2为锰源,设计了两条工艺路线,并分析了这两种工艺对富锂正极材料Li1.2Mn0.54Ni0.13Co0.13O2结构、形貌、振实密度及电化学性能的影响。研究结果表明,两种工艺制备的材料都具有层状结构,二次颗粒都呈球形,球形颗粒的直径都在2~15μm,一次颗粒0.2~1.0μm;但是在两种不同的工艺下,球形颗粒的聚集程度不一,其中以MnO2为锰源,制备的材料的颗粒接触最为紧密,而且其振实密度高,为1.5g·cm-3。以制备出的材料作为电池的正极材料,组装2032扣式电池,在0.1C(20mA·g-1),电压范围2.0~4.8V,测试材料的首次充放电,其中以MnCO3为锰源,制备的材料的首次放电比容量为最高,为262.1mAh·g-1,首次库伦效率为76.8%。在不同倍率(0.2C,0.5C,1.0C和3.0C)下测试电池性能,以MnO2为锰源,3.0C下的放电比容量为183.5mAh·g-1。因此,采用MnO2为锰源制备出的富锂正极材料具有较高的倍率性能。 Two routes were designed to prepare Li-rich solid solution material Lil 2 Mn0.54Ni0. 13 CO0. 13 O2 with MnCO3 or MnO2 as man- ganese raw materials. After that, the influences of the two different routes on structure, morphology, tap density and electrochemical properties were analyzed. X-ray diffraction (XRD) results showed that the space group of the materials prepared by the two processes was R-3m. The morphology of the two materials was spherical and the diameter of the sphere was 2 - 15 μm. The first particle was 0. 2 - 1.0 ~m. However, the degree of aggregation of particles was different. The particles of the material prepared by MnO2 as manga- nese raw materials contacted closely and its tap density was higher, which was 1.5 g.cm-3. The prepared material was used to assem- ble 2032 button cell as cathode material. The charge/discharge properties of these materials were tested at different rates in the voltage range of 2.0 ~4.8 V. At 0.1C (20 mA.g-1 ), the first discharge capacity of the material made by the process of using MnCO3 as raw material was the highest, which was 262.1 mAh·g-1. The first coulombic efficiency of this kind of material was 76.8%. It was used to test ceil properties at different current densities (0.2C, 0.5C, 1.0C and 3.0C). The discharge capacity at 3.0C was 183.5 mAh·g-1. In conclusion, the materials prepared with MnO2 as Mn-raw material had better rate properties.
出处 《稀有金属》 EI CAS CSCD 北大核心 2015年第10期891-895,共5页 Chinese Journal of Rare Metals
基金 国家科技部'863'计划项目(2012AA110102)资助
关键词 锂离子电池 富锂固溶体 正极材料 lithium ion batteries Li-rich solid solution cathode materials
  • 相关文献

参考文献20

  • 1Brodd R J, Bullock K R, Leising R A, Middaugh R L, Miller J R, Takeuchic E. Batteries, 1977 to 2002 [ J ]. J. Electrochem. Soc., 2004, 151(3) : K1.
  • 2Ammundsen B, Paulsen J. Novel lithium-ion cathode materials based on layered manganese oxides [ J ]. Adv. Mater., 2001, 13(12-13): 943.
  • 3Zhumabay B, Izumi T. Electrochemical performance of nanocomposite LiMnPQ/C cathode materials for lithium batteries [J]. Electrochem. Commun. , 2010, 12: 75.
  • 4Stefania F, Rodrigo L L, Doretta C, Eliana Q, Aldo M, Piercarlo M, Patrizia C. Influence of particle size and crystal orientation on the electrochemical behavior of car- bon-coated LiFePO4 [J]. J. Phys. Chem. C, 2010, 114 : 12598.
  • 5YuLH, CaoYL, YangHX, AiXP. Synthesis and electrochemical properties of high-voltage LiNi0.5 Mnl. s 04 electrode material for Li-ion batteries by the polymer-py- rolysis method J]. J. Solid State Electrochem. , 2006, 10 (5): 283.
  • 6Gao T H, Liu H Y, Zhang P, Wu S Q, Yang Y, Zhu Z Z. Structural and electronic properties of Al-doped spi- nel LiMn204 [ J]. Acta Physica Sinica, 2012, 61 (18) : 187306.
  • 7Dutta G, Manthiram A, Goodenough J B. Chemical synthesis and properties of Lil _a_xNi1+802 and Li [ Ni2 Q[J]. J. Solid State Chem. , 1992, 96(1) : 123.
  • 8Gao Y, Yakovleva M V, Ebner W B. Novel LiNi_x Tix/2 Mgg2 02 compounds as cathode materials for safer lithium-ion batteries [ J ]. Electrochem. Solid-State Lett. , 1998, 1(3): 117.
  • 9Vitins G, West K. Lithium intercalation into layered LinnO2[J]. J. Electrochem. Soc., 1997, 144(8): 2587.
  • 10班丽卿,庄卫东,卢华权,尹艳萍,王忠.层状锂镍钴锰氧化物正极材料的改性研究进展[J].稀有金属,2013,37(5):820-833. 被引量:5

二级参考文献70

共引文献4

同被引文献23

  • 1郭炳琨 等.锂离子电池[M].长沙:中南大学出版社,2002..
  • 2Kang S H, Kempgens P, Greenbaum S, Kropf A J, A- mine K, Thackeray M M. Interpreting the structural and electrochemical complexity of 0.5Li:MnO3. 0.5LiMO2 e- lectrodes for lithium batteries ( M = Mno. 5 - x Ni0.5 - x Co2x, 0≤x ≤0. 5) [J]. J. Mater. Chem., 2007, 17 (20) : 2069.
  • 3Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Benedek R, Hackney S A. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries [J]. J. Mater. Chem., 2007, 17 (30) : 3112.
  • 4Lu Z, Dahn J R. Understanding the anomalous capaci- ty of Li/Li [ NixLi(1/3 -2x/3) Mn(2/3 -x/3) ] O2 cells using in situ X-ray diffraction and electrochemical studies [ J ]. J. Electrochem. Soc., 2002, 149(7): A815.
  • 5Kim Y J, Hong Y, Kim M G, Cho J. Li0.93 [ Lio.21 Coo. 2s Mn0.51 ] 02 nanoparticles for lithium battery cathode material made by cationic exchange from K-bimessite [J]. Electrochem. Commun. , 2007, 9(5): 1041.
  • 6Kim M G, Jo M, Hong Y S, Cho J. Template-free synthesis of Li [ Nio.25 Lio. is Mno.6 ] Oz nanowires for high performance lithium battery cathode [ J ]. Chem. Com- mun. , 2009, 45: 218.
  • 7Wei G Z, Lu X, Ke F S, Huang L, Li J T, Wang Z X, Zhou Z Y, Sun S G. Crystal habit-tuned nanoplate ma- terial of Li ~ Lil/3_2x/3 NixMn2/3-~/3 ~ 02 for high-rate per- formance lithium-ion batteries [ J ]. Adv. Mater. , 2010, 22(39) : 4364.
  • 8Shi S J, Tu J P, Tang Y Y, Yu Y X, Zhang Y Q, Wang X L, Gu C D. Combustion synthesis and electrochemi- cal performance of Li [ Li02 Mno.54 Nio, 13 Coo ~3 ] Oz with improved rate capability [J]. Journal of Power Sources, 2013, 228(15) : 14.
  • 9Armstrong A R, Robertson A D, Bruce P G. Structural transformation on cycling layered Li [ Mn1-yCoy ] 02 cath- ode materials [ J ]. Electrochim. Acta, 1999,45 (1-2) : 285.
  • 10Kim Y, Kim H S, Martin S W. Synthesis and electro- chemical characteristics of Al2O3-coated LiNi1/3 Cot/3 Mn1/3O2 cathode materials for lithium ion batteries [J]. Electrochim. Acta, 2006, 52 ( 3 ) : 1316.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部