期刊文献+

基于子网格边界近似Riemann解的人为粘性方法 被引量:1

An Artificial Viscosity Based on the Subcell-Edged Approxim ate Riemann Solver
下载PDF
导出
摘要 在交错网格型Lagrange(拉格朗日)流体力学算法中,通常采用人为粘性捕捉激波,人为粘性的好坏对于计算结果至关重要.研究了一种基于子网格边界处近似Riemann解的新型人为粘性.新人为粘性能够满足动量守恒和熵不等式.利用子网格边界速度差中引入的限制器,新人为粘性能够区分激波和等熵压缩,并能满足球对称问题中的波面不变性.新人为粘性在典型模型数值模拟及惯性约束聚变黑腔整体数值模拟中取得了较好的结果. The artificial viscosity method is generally used to capture shock waves in the La- grangian hydrodynamics algorithms, and the properties of the artificial viscosity influence the simulation results essentially. A new artificial viscosity based on the subcell-edged approximate Riemann solver was presented. This new method was prove to have the merits of momentum conservation and satisfaction of entropy inequality. With the introduced limiters for the differ- ences of velocities on the subcell edges, the presented artificial viscosity is able to distinguish the shock wave from the isoentropic compression and satisfy the wave front invariance in the spherical symmetric problems. Various numerical examples demonstrate the robustness and ef- fectiveness of the new artificial viscosity.
作者 翟传磊 勇珩
出处 《应用数学和力学》 CSCD 北大核心 2015年第10期1045-1057,共13页 Applied Mathematics and Mechanics
基金 国家高技术研究发展计划(863计划)(2012A01303) 国家自然科学基金(91130002 11371065) 中国工程物理研究院科学技术发展基金(2012A0202010)~~
关键词 Lagrange流体力学 人为粘性 近似Riemann解 大长宽比网格 惯性约束聚变 Lagrangian hydrodynamics artificial viscosity method approximate Riemann sol- ver large aspect ratio grid inertial confinement fusion
  • 相关文献

参考文献15

  • 1葛全文.Lagrange非结构网格高阶交错型守恒气体动力学格式[J].应用数学和力学,2014,35(1):92-101. 被引量:3
  • 2von Neumann J, Richtmyer R D. A method for the numerical calculation of hydrodynamic shocksI JJ. Journal of Applied Physics, 1950, 21 (3) : 232-237.
  • 3Landshoff R. A numerical method for treating fluid flow in the presence of shocks[ R]. Los Al- amos, New Mexico: Los Alamos National Laboratory, LA-1930, 1955.
  • 4Kuropatenko V F. Difference Methods for Solutions of Problems of Mathematical Physics I IMp. Janenko N N, ed. USA: Amer Mathematical Society, 1967: 115.
  • 5Caramana E J, Burton D E, Shashkov M J, Whalen P P. The construction of compatible hy- drodynamics algorithms utilizing conservation of total energy E J J. Journal of Computational Physics, 1998, 146(l) : 227-252.
  • 6Caramana E J, Shashkov M J, Whalen P P. Formulations of artificial viscosity for multi-di- mensional shock wave computations~J]. Journal of Computational Physics, 1998, 144( 1 ) : 70-97.
  • 7Campbell J C, Shashkov M J. A tensor artificial viscosity using a mimetic finite difference al- gorithm [ J ]. Journal of Computational Physics, 201 l, 172 (2) : 739-765.
  • 8Loub~re R, Maire P H, V6chalc P. A second-order compatible staggered Lagrangian hydrody- namics scheme using a cell-centered multidimensional approximate Rtemann solver E J I. Pro- cedia Computer Science, 2010, 1(1) : 1931-1933.
  • 9Pierre-Henri Maire,Raphael Loubere,Pavel Vachal.Staggered Lagrangian Discretization Based on Cell-Centered Riemann Solver and Associated Hydrodynamics Scheme[J].Communications in Computational Physics,2011,10(9):940-978. 被引量:3
  • 10Barlow A, Burton D, Shashkov M. Compatible, energy and symmetry preserving 2D Lagrang- ian hydrodynamics in rz-cylindrical coordinates [ J ]. Procedia Computer Science, 2010, 1 ( 1 ) : 1893-1901.

二级参考文献32

共引文献67

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部