期刊文献+

气流场和聚合物射流运动对液喷纺纤维形貌的影响 被引量:1

Influence of airflow field distribution and polymer solution jet motion on morphology of solution-blown fibers
下载PDF
导出
摘要 为研究液喷纺丝过程中气流场分布和聚合物溶液射流运动对纤维形貌的影响,通过数值模拟分析变压力条件下液喷环形喷嘴下方的气流场分布,采用高速摄影技术捕捉聚丙烯腈(PAN)溶液射流在湍流场中的运动并分析其运动规律。结果表明:随气流压力的增加,气流中心线速度和湍流强度增加;液喷纺PAN微纳米纤维直径逐渐降低并变得均匀,但压力过大会恶化纤维形貌,并伴随着纤维束的出现。液喷纺丝过程中纤维的细化与气流的拉伸作用、聚合物射流的弯曲不稳定性和摆动作用等因素有关。 To investigate the influence of airflow field distribution and polymer solution jet motion on the morphology solution-blown fiber, the airflow field distribution below a solution-blowing annular nozzle was numerically simulated using the computational fluid dynamic approach, polyacrylonitrile (PAN) solution motion in the turbulent field was captured with a high-speed camera and the motion law was analyzed. The results show that with the increase of the airflow pressure, the airflow centerline velocity and turbulent intensity increases with the increase of air pressure, the diameters of solution-blown PAN fibers decrease and become more uniform. However, the fiber morphology become worse, with the emergence of some fiber strands under overhigh air pressure. The fiber thinning is correlated with factors such as stretching effects of airflow, bending instability and flapping motion of polymer solution jet, and the like.
出处 《纺织学报》 EI CAS CSCD 北大核心 2015年第10期17-23,共7页 Journal of Textile Research
基金 河南工程学院轻化工程技术研究中心项目(GCZX2013003)
关键词 液喷 数值模拟 聚合物射流摆动 纤维直径 纤维形貌 solution blowing numerical simulation polymer solution jet flapping motion fiber diameter fiber morphology
  • 相关文献

参考文献16

  • 1LUO C J, STOYANOV S D, STRIDE E, et al. Electrospinning versus fibre production methods: from specifics to technological convergence [ J ]. Chemical Society Reviews, 2012, 41 (13) : 4708 -4735.
  • 2MEDEIROS E S, GLENN G M, KLAMCZYNSKI A P, et al. Solution blow spinning: a new method to produce micro- and nanofibers from polymer solutions [J]. Journal of Applied Polymer Science, 2009, 113 ( 4 ) : 2322 - 2330.
  • 3ZHANG L, KOPPERSTAD P, WEST M, el al. Generation of polymer ultrafine fibers through solu- tion (air-) blowing [J]. Journal of Applied Polymer Science, 2009, 114(6) : 3479 -3486.
  • 4SINHA- RAY S, YARIN A L, POURDEYHIMI B. The production of 100/400 nm inner/uuter diameter carbon tubes by solution blowing and carbonization of core - shell nanofibers [ J ]. Carhon, 2010, 48 (12) : 3575 -3578.
  • 5ZHUANG X, YANG X, SHI L, et at. Solution blowing of submicron-scale cellulose fibers [ J ]. Carbohydrate Polymers, 2012, 90(2): 982-987.
  • 6LOU H, LI W, LI C, et al. Systematic inwastigation on parameters of solution blown micro/nanofihers using response surface methodology based on Box-Behnken design [ J]. Journal of Applied Polymer Science, 2013, 130(2): 1383-1391.
  • 7CHEN S, HOU H, HARNISCH F, et al. Eleetrospun and solution blown three-dimensional carbon fiber nonwovens for application as electrodes in microbial filel cells [ J ]. Energy & Environmental Science, 2011 , 4(4) : 1417-1421.
  • 8SINHA-RAY S, KHANSAR1 S, YARIN A I,, et al. Effect of chemical and physical cross-linking on tensile characteristics of solution-blown soy protein nanofiber mats [ J ]. Industrial & Engineering Chemistry Research, 2012, 51 (46) : 15109 - 15121.
  • 9ZHUANG X, JIA K, CHENG B, et al. Solution blowing of continuous carbon nanofiber yarn and its electrochemical performance for supercapacitors [ J ]. Chemical Engineering Journal, 2014, 237 : 308 - 311.
  • 10MILLER D R, COMINGS E W. Force-momentum fields in a dual-jet flow [ J ]. Journal of Fluid Mechanics, 1960, 7(2): 237-256.

同被引文献11

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部