期刊文献+

空间网格结构动力分析的非线性模态方法 被引量:1

Nonlinear Mode Method for Dynamic Analysis of Spatial Latticed Structures
下载PDF
导出
摘要 空间网格结构因自由度数多且无简化的力学模型,非线性动力分析通常要耗费大量时间.传统的非线性模态方法用于求解多高层结构的局部非线性问题已获得良好的效果,但对系统非线性问题的应用尚缺少研究.对比分析多高层结构和空间网格结构动力性能差异,指出网格结构动力非线性分析存在的问题.以主振型理论和切线刚度分离法为基础,将非线性模态方法用于几何非线性效应显著的空间网格结构动力分析.通过对运动方程的非线性恢复力进行拆分,形成线性表达形式,然后解耦到主振型所在的广义坐标系,以达到缩减自由度数量的目的.并通过实例验证非线性模态方法的高效性与适用性. Nonlinear dynamic analysis of spatial latticed structures will spend much time because of its un-simplified model with large degree of freedoms(DOFs). It turns out to be satisfied that traditional nonlinear mode dynamic method is applied on solving local nonlinearity of multi-storey structures, however, few researchers try to use the method to analyze systematical nonlinearity of spatial latticed structures. Dynamics characteristics of multi-storey and spatial latticed structure were discussed by comparison, then some problems encountered by nonlinear dynamic analysis of spatial latticed structure were listed. Based on dominant vibration theory and tangent stiffness separation method, nonlinear mode method was updated to be suit for dynamic analysis of spatial latticed structure with significant geometrical nonlinearity. The method aims at reducing number of DOFs and solving differential equation efficiently by such a series of manipulations, where they are splitting up restoring force vector into linear and nonlinear parts, changing equation of motion to be linear formally, decomposing the converted equation of motion by the generalized coordination consisting of dominant vibration mode vector and time-stepping integral so on. In the end, the efficiency and applicablity of nonlinear mode method was verified by Gedesike shell.
作者 王磊
出处 《力学季刊》 CSCD 北大核心 2015年第3期509-516,共8页 Chinese Quarterly of Mechanics
基金 国家自然科学基金(51378379)
关键词 空间网格结构 几何非线性动力分析 主振型 切线刚度分离法 非线性模态法 spatial latticed structures geometrical nonlinear dynamic analysis dominant vibration mode tangent stiffness separation method nonlinear mode method
  • 相关文献

参考文献11

  • 1王磊,罗永峰.空间网格结构抗震分析中的阈值法理论[J].东南大学学报(自然科学版),2011,41(3):636-641. 被引量:17
  • 2KATO S, NIHO Y,KIM J M. A study on elasto-plastic buckling behavior of orthogonally anisotropiccylindrical latticed shell under axial compression[J], Journal of Structural and Construction Engineering,2003, 573(11):111-118.
  • 3李忠学,沈祖炎,邓长根.杆系钢结构非线性动力稳定性识别与判定准则[J].同济大学学报(自然科学版),2000,28(2):148-151. 被引量:31
  • 4FARBOD A, MARCO A. Non-linear vibrations of shells: A iterature review from 2003 to 2013[J].International Journal of Non-Linear Mechanics, 2014,58(1):233-257.
  • 5王磊.空间网格结构振型遴选阈值法理论研究[D].上海:同济大学土木工程学院,2011:38-60.
  • 6LUO Y F, WANG L. Threshold value method and its application in dynamic analysis of spatial latticedstructures[J], Advances in Structural Engineering, 2012,12(15):2215-2226.
  • 7CLOUGH R W, PENZIEN J. Dynamics of structures[M]. Berkeley: Computers & Structures. Inc., 1995.
  • 8WILSON R L. Three-dimensional static and dynamic analysis of structures - physical approach withemphasis on earthquake engineering[M]. Berkeley: Computers and Structures. Inc., 1998.
  • 9KATO S,NAKAZAWA S, SAITO K. Two-mode based estimation of equivalent seismic loads and staticestimation of dynamic response of reticular dome supported by ductile substructure[J]. Journal of theInternational Association for Shell and Spatial Latticed Structures, 2006, 47(1):35-52.
  • 10KATO S, NAKAZAWA S,SAITO K. Estimation of static seismic loads for latticed domes supported bysubstructure frames with braces deteriorated due to buckling[J]. Journal of the International Association forShell and Spatial Structures, 2007,48(2):71-86.

二级参考文献10

  • 1中国建筑科学研究院.JGJ7-2010空间网格结构技术规程[S].北京:中国建筑工业出版社,2010.
  • 2Nour-Omid B, Clough R W. Dynamic analysis of struc- tures using Lanczos co-ordinates [ J ]. Earthquake Engi- neering &Structural Dynamics, 1984, 12(4): 565-577.
  • 3Wilson E L. Three dimensional static and dynamic anal- ysis of structures : a physical approach with emphasis on earthquake engineering [ M ]. Berkeley, CA, USA: Computers & Structures Inc, 2002.
  • 4Clough R, Penzien J. Dynamics of structures[ M]. Berke- ley, CA, USA: Computers & Structures Inc, 1995.
  • 5Hansteen O E, Bell K. On the accuracy of mode super- position analysis in structural dynamics [ J ]. Earthquake Engineering &Structural Dynamics, 1979, 7(5) : 405- 411.
  • 6Kato S, Nakazawa S, Saito K. Two-mode based esti-mation of equivalent seismic loads and static estimation of dynamic response of reticular domes supported by ductile substructures [ J ]. Journal of the International Association for Shell and Spatial Structures, 2006, 47 (1): 35 -52.
  • 7Nakayama M, Sasaki Y, Masuda K, et al. An efficient method for selection of vibration modes contributory to wind response on dome-like roofs[ J ]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 73 (1): 31-43.
  • 8杨木旺,罗永峰.大跨空间结构的竖向静力弹塑性分析[J].力学季刊,2007,28(3):436-442. 被引量:4
  • 9田玉基,杨庆山.大跨度屋盖结构脉动风振响应的参与振型[J].哈尔滨工业大学学报,2009,41(6):146-149. 被引量:4
  • 10李忠学,沈祖炎,邓长根.广义位移控制法在动力稳定问题中的应用[J].同济大学学报(自然科学版),1998,26(6):609-612. 被引量:5

共引文献46

同被引文献8

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部