期刊文献+

考虑环境温度的重型落地镗铣床热误差建模研究 被引量:1

Considering the influence of environmental temperature of heavy type milling boring machine tool thermal error modeling
下载PDF
导出
摘要 重型落地镗铣床因自身尺寸大、结构复杂且易受多热源影响导致其产生较大的热变形,使得主轴刀尖点产生偏移,降低乃至严重恶化机床加工精度。本文针对重型落地镗铣床开展了不同环境温度和工况的热特性实验,依据实验结果对常见的热误差模型进行对比分析得到了一种鲁棒性更强、预测效果好的模型,为重型落地镗铣床热误差控制提供参考依据。 Owing to its large structure and ranges of movement, heavy type milling boring machine is suscepti-ble to external and internal thermal source, which will transfer to frame cause distortion. As a resuh of super-position of those deformations, it causes offsets to tip point and machining precision will be reduced. In this pa-per the thermal characteristics experiments of environment and different work conditions were conducted. Ac-cording to analyze of the experiments, two kinds of usual thermal error model were compared to find which oneis more robust and accurate and provide a reference for thermal error modeling.
出处 《重型机械》 2015年第5期10-16,21,共8页 Heavy Machinery
基金 国家科技重大专项(2013ZX04013-011)
关键词 重型落地镗铣床 环境温度 热误差建模 多点温度 heavy type boring and milling machine environment temperature thermal error modeling multi-point temperature
  • 相关文献

参考文献9

  • 1WECK M, MC K P. Reduction and compensation of thermal error in machine tools [ J ]. Annals of CIRP- CIRP Annals-Manufacturing Technology, 1995, 44 (2) : 589-598.
  • 2项伟宏,郑力,刘大成,赵大泉.机床主轴热误差建模[J].制造技术与机床,2000(11):12-14. 被引量:32
  • 3吴雄彪,姚鑫骅,傅建中.基于贝叶斯网络的数控机床热误差建模[J].中国机械工程,2009,10(3):293-296. 被引量:21
  • 4Josef M, et al. Thermal issues in machine tools [ J ] CIRP Annals-Manufacturing Technology , 2012 , 61 771-791.
  • 5林伟青,傅建中,陈子辰,许亚洲.数控机床热误差的动态自适应加权最小二乘支持矢量机建模方法[J].机械工程学报,2009,45(3):178-182. 被引量:44
  • 6ISO230-3:2003 test code for machine tools-Part 3: determination of thermal effects[ M ]. International Or- ganization for Standardization.
  • 7B. Tan, et al. A thermal error model for large machine tools that considers environmental thermal hysteresis effects[ J]. Int. J. Mach. Tools Manuf. 2014, 82 (4) : 11-20.
  • 8Vyroubal J. Compensation of Machine Tool Thermal Deformation in Spindle Axis Direction Based on De- composition Method [ J ]. Precision Engineering, 2012, 36: 121-127.
  • 9E. Gomez-Acedo, A. 01arra, L. N. Lo Calle, A method for thermal characterization and modeling of large gantry-type machine tools [ J ]. The International Journal of Advanced Manufacturing Technology 2012, 62(9-12) : 875-886.

二级参考文献18

  • 1傅建中,陈子辰.精密机械热动态误差模糊神经网络建模研究[J].浙江大学学报(工学版),2004,38(6):742-746. 被引量:37
  • 2李永祥,童恒超,曹洪涛,张宏韬,杨建国.数控机床热误差的时序分析法建模及其应用[J].四川大学学报(工程科学版),2006,38(2):74-78. 被引量:38
  • 3李永祥,杨建国.灰色系统模型在机床热误差建模中的应用[J].中国机械工程,2006,17(23):2439-2442. 被引量:25
  • 4Pahk H J, Lee S W. Thermal Error Measurement and Real Time Compensation System for the CNC Machine Tools Incorporating the Spindle Thermal Error and the Feed Axis Thermal Error[J]. International Journal of Advanced Manufacture Technology,2002, 20(7) : 487-494.
  • 5Yang H, Ni J. Dynamic Neural Network Modeling for Nonlinear, Nonstationary Machine Tool Thermally Induced Error[J]. International Journal of Machine Tools and Manufacture, 2005, 45(4): 455 -465.
  • 6VAPNIK V. Statistical learning theory[M]. New York: John Wiley, 1998.
  • 7SUYKENS J A K, VAN GESTEL T, DE BREBANTER J, et al. Least squares support vector machines[M]. Singapore: World Scientific Pub. Co., 2002.
  • 8SUYKENS J A K. Weighted least squares support vector machines: Robustness and sparse approximation[J]. Neurocomputing, 2002, 48(1): 85-105.
  • 9YANG S S, LU W C, CHEN N Y, et al. Support vector regression based QSPR for the prediction of some physicochemical properties of alkyl benzenes[J]. Journal of Molecular Structure, 2005, 719(13): 119-127.
  • 10潘淑微.数控车床主轴热误差快速辨识及补偿技术研究[D].杭州:浙江大学,2006.

共引文献87

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部