期刊文献+

权重选择下的低延迟飞艇自适应部署

Airship adaptive deployment with lower latency in different priorities
下载PDF
导出
摘要 由于高空平台(HAP)通信系统对飞艇执行任务的时间要求严格,构建以时延为移动因子的限制性空间自适应(RSAP)学习模型。在包含任务层、HAP层和卫星层的3层异构网络环境中,为达到任务层对通信效果的要求,提出一种通过改变时延权重系数调整飞艇对任务层覆盖方式的策略,达到对任务层的无缝覆盖以及降低通信时延的效果。仿真结果表明,该部署模型能实现对任务层较高的覆盖率,有效降低飞艇通信时延,提高服务质量。 The high-altitude airship platform(HAP)communication system has strict requirement on the task execution time,facing withthisfact and choosing time delay as mobile factor,a restricted space adaptive play(RSAP)learning model was constructed.Meanwhile,in a 3-layered heterogeneous network which contained task layer,HAP layer and satellite layer,to meet the requirement that the task layer is strict with the communication efficiency,and a policy was proposed to adjust the airships' covering strategy by changing the weighting factor of time delay.The simulation results show that the mentioned model and policy can achieve high coverage rate of the task layer,reduce the airship communication time delay effectively and improve the quality of service.
出处 《计算机工程与设计》 北大核心 2015年第10期2657-2661,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61262074) 广西可信软件重点实验室开放课题基金项目(kx201101) 广西高校优秀人才资助计划基金项目(桂教人201065) 广西自然科学回国基金项目(2012GXNSFCA053009) 2014广西硕士研究生创新项目基金项目(YCSZ2014145)
关键词 高空飞艇平台 部署模型 游戏理论 时延 权重分配 high-altitude airship platform deployment model game theory time delay weight distribution
  • 相关文献

参考文献15

  • 1王彦广,姚伟,李勇.平流层飞艇技术发展及其应用前景展望[J].卫星与网络,2010(4):18-21. 被引量:13
  • 2Widiawan AK,Tafa2011i R.High altitude platform station(HAPS):A review of new infrastructure development for future wireless communications[J].Wireless Personal Communications,2007,42(3):387-404.
  • 3Mohammed A,Yang Z.Broadband communication and applications from high altitude platform[J].International Journal of Recent Trends in Engineering,2009,1(3):239-243.
  • 4Alejandro AZ,Jose LC,Joss AD.High-altitude platforms for wireless communications[M].United Kingdom:Wiley Press,2008.
  • 5Mohammed A,Hult T.Capacity evaluation of a high altitude platform diversity system equipped with compact MIMO antennas[J].International Journal of Recent Trends in Engineering,2009,1(3):244-247.
  • 6Michailidis ET,Kanatas AG.Three-dimensional HAP-MIMO channels:Modeling and analysis of space-time correlation[J].IEEE Transactions on Vehicular Technology,2010,59(5):2232-2242.
  • 7Song HY.A method of mobile base station placement for high altitude platform based network with geographical clustering of mobile ground nodes[J].Journal of Telecommunications and Information Technology,2009(2):22-33.
  • 8Wang X,Gao X,Zong Ru.An optimal model and solution of deployment of airships for high altitude platforms[C]//Proceedings of the International Wireless Communications and Signal Processing,2010.
  • 9Nia MM,Rahman TA.Spectrum correlated criteria and their impacts on high altitude platform station(HAPS)and fixed satellite service(FSS)coexistence in frequency range 5,850-7,075 MHz[J].Wireless Personal Communications,2013,69(1):357-372.
  • 10Jeon S,Ji C.Randomized and distributed self-configuration of wireless networks:Two-layer Markov random fields and near-optimality[J].IEEE Transactions on Signal Processing,2010,58(9):4859-4864.

二级参考文献22

  • 1顾一中.基于“北斗”导航系统的无线传感器网络定位算法研究[J].山东交通学院学报,2006,14(3):58-61. 被引量:1
  • 2Bourdarie M and Xapsos S. The near-earth space radiation environment [J]. IEEE Transactions on Nuclear Science, 2008 55(4): 1810-1832.
  • 3Zheng Bo, Ren Qing-hua, and Liu Yun-jiang, et al.. Characteristic and simulation of the simulation of the near space communication channel [C]. IEEE 2007 International Symposium on Microwave, Antenna, Propagation, and EMC Technologies For Wireless Communications, Hangzhou, August 14-17, 2007: 769-773.
  • 4Milner S D, Llorca J, and Davis C C. Autonomous reconfiguration and control in directional mobile Ad hoc networks [J]. IEEE Circuits and Systems Magazine, 2009,9(2): 10-26.
  • 5Mollanejad A, Khanli L M, and Zeynali M. DBSR: dynamic base station repositioning using genetic algorithm in wireless sensor network [C]. Second International Conference on Computer Engineering and Applications (ICCEA), Bali Island, March 19-21, 2010: 521-525.
  • 6Ferro A, Giugno R, Pigola M M G, and Pulvirenti A. Distributed clustering and closest-match motion planning algorithms for wireless Ad hoc networks with movable base stations, http://ferrolab.dmi.unict .it/downloads/medhoc 2006.pdfl 2008.5.
  • 7Marbukh V and Sayrafian P K. Mobile sensor networks self-organization for system utility maximization: work in progress [C]. Fifth International Conference on Wireless and Mobile Communications, Cannes, La Bocca, August 23-29, 2009: 416-419.
  • 8Younis M and Akkaya K. Strategies and techniques for node placement in wireless sensor networks: a survey [J]. Ad hoc Networks, 2008, 6(4): 621-655.
  • 9Luo Hao, Liu Zhong, and Xue Feng. A deployment strategy for target surveillance sensor networks based on acoustic energy measurements [C]. 2nd International Conference on Future Computer and communication, Wuhan, China, May 21-24, 2010: 686-690.
  • 10Akkaya K, Younis M, and Bangad M. Sink repositioning for enhanced performance in wireless sensor networks [J]. Computer Networks, 2005, 49(4): 512-534.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部