期刊文献+

基于自适应深度置信网络的图像分类方法 被引量:2

Image classification algorithm based on adaptive deep belief network
下载PDF
导出
摘要 针对传统的深度置信网络在数据的特征表达过程中收敛速度较慢、训练时间较长的问题,提出一种非监督学习算法,即自适应深度置信网络,将其应用于图像分类任务中。采用一种自适应步长大小方法,解决训练时对适合的学习率的选择困难,加速训练的收敛性。在MNIST手写数据集上进行测试验证并与多个分类器的性能进行对比分析,实验结果表明,该算法具有更快的收敛速度和良好泛化能力,图像的分类效果得到有效提升。 The feature representation of data is often a computationally expensive process that involves slow convergence rate and requires a considerable amount of training time for tradition deep belief network.To mitigate this problem,an unsupervised learning algorithm,namely adaptive deep belief network,was proposed and applied to image classification tasks.An adaptive step size technique was used,which solved the difficulty of choosing an adequate learning rate and accelerated the training convergence.The testing verification was conducted on the MNIST dataset and the contrastive analysis was carried out compared with several classifiers' performance.The results show the proposed algorithm has higher convergence speed and better generalization ability,and the results of image classification are also effectively improved.
作者 杨春德 张磊
出处 《计算机工程与设计》 北大核心 2015年第10期2832-2837,共6页 Computer Engineering and Design
基金 重庆市教科委科学技术研究基金项目(KJ100513)
关键词 深度学习 约束波尔兹曼机 深度置信网络 图像分类 softmax回归 deep learning restricted Boltzmann machine deep belief network image classification softmax regression
  • 相关文献

参考文献14

  • 1Gao H,Dou L,Chen W,et al.Image classification with Bagof-Words model based on improved SIFT algorithm[C]//9th Asian Control Conference,2013:1-6.
  • 2Jain S.A machine learning approach:SVM for image classification in CBIR[J].International Journal of Application or Innovation in Engineering and Management,2013,2(4):446-452.
  • 3Xiong Z,Chen K,Gu C,et al.An algorithm of image classification based on BP neural network[C]//IEEE International Conference on Computer Science and Automation Engineering,2012:523-526.
  • 4Bengio Y.Learning deep architectures for AI[J].Foundations and trends in Machine Learning,2009,2(1):1-127.
  • 5Bengio Y,Delalleau O.On the expressive power of deep architectures[G].LNCS 6925:Algorithmic Learning Theory,2011:18-36.
  • 6Bengio Y.Deep learning of representations for unsupervised and transfer learning[C]//International Conference on Machine Learning,2012.
  • 7Lee Honglak,Grosse Roger,Ranganath Rajesh,et al.Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations[C]//Proceedings of the 26th Annual International Conference on Machine Learning.ACM,2009.
  • 8Schmidhuber J.Deep learning in neural networks:An overview[J].Neural Networks,2014,10(1):1404-1092.
  • 9Hrster E,Lienhart R.Deep networks for image retrieval on large-scale databases[C]//Proceedings of the 16th International Conference on Multimedia,2008.
  • 10Hamel P,Eck D.Learning features from music audio with deep belief networks[C]//Utrecht,The Netherlands,2010.

同被引文献11

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部