期刊文献+

基于空间异质分区的残差IDW插值方法 被引量:6

Residual Inverse Distance Weighting Spatial Interpolation Method Based on Spatial Heterogeneity Sub-region
下载PDF
导出
摘要 空间插值可以利用已有观测数据修补缺失的观测数据,也可以利用离散数据构建连续的表面数据,但现有的空间插值方法没有充分考虑空间数据的异质性。该文提出一种基于空间异质分区的残差反距离加权插值方法(RRIDW)。首先根据采样点属性值对研究区域进行空间异质分区;为了进一步去除不同子区域内的空间趋势,对每个子区域计算趋势面,进而计算得到采样点属性值的异质分区残差,利用属性值残差进行反距离加权插值;最后结合趋势计算得到待求点处的空间插值结果。实验采用两组实际PM2.5浓度数据和降雨量数据,运用交叉验证方法对RRIDW方法与其他常用空间插值方法进行对比分析,验证了该方法的优越性和可行性。 Spatial interpolation methods,on one hand,can utilize the observation data to complete the missing data,and on the other hand,can also convert the discrete data into a continuous surface.However,the existing spatial interpolation methods lack an adequate consideration of the effect of spatial heterogeneity in spatial data.Therefore,the residual inverse-distance weighting spatial interpolation method based on spatial heterogeneity sub-region was presented in the paper.First of all,according to the sample point attribute value,the research area is divided into spatial heterogeneity sub-regions.And then calculate the trend surface to obtain the residuals of the sample points′attributes,which are used for inverse distance weighted interpolation in the next step.Finally,the spatial interpolation result is estimated by combining the trend surface values and the interpolated residuals.At the end of this paper,two sets of actual PM2.5concentrations and rainfall data are adopted to verify the effectiveness of the method proposed by comparing RRIDW with the commonly used spatial interpolation methods.
出处 《地理与地理信息科学》 CSCD 北大核心 2015年第5期25-29,共5页 Geography and Geo-Information Science
基金 国家863计划项目(2013AA122301) 高等学校博士点专项科研基金项目(20110162110056) 湖南省博士生优秀学位论文资助项目(CX2014B050)
关键词 空间异质性 空间分区 空间插值 趋势面分析 spatial heterogeneity space partition spatial interpolation trend surface analysis
  • 相关文献

参考文献15

  • 1LI J,ANDREW D H.A review of comparative studies of spatial interpolation methods in environmental sciences:Performance and impact factors[J].Ecological Informatics,2011(6):228-241.
  • 2SMITH M J D,GOODCHILD M F,LONGLEY P.Geospatial Analysis:A Comprehensive Guide to Principles,Techniques and Software Tools[M].Troubador Publishing Ltd,2007.
  • 3LI J,ANDREW D H.Spatial interpolation methods applied in the environmental sciences:A review[J].Environmental Modelling&Software,2014,53(3):173-189.
  • 4EFRON B,GONG G.A leisurely look at the bootstrap,the jackknife,and cross-validation[J].The American Statistician,1983,37(1):36-48.
  • 5SHIODE N,SHIODE S.Street-level spatial interpolation using network-based IDW and ordinary Kriging[J].Transactions in GIS,2011,15(4):457-477.
  • 6易琳,袁林旺,罗文,俞肇元.顾及V-邻域结构的局部保形插值算法[J].武汉大学学报(信息科学版),2012,37(11):1285-1288. 被引量:5
  • 7李莎,舒红,徐正全.利用时空Kriging进行气温插值研究[J].武汉大学学报(信息科学版),2012,37(2):237-241. 被引量:47
  • 8NALDER I A,WEIN R W.Spatial interpolation of climatic normals:Test of a new method in the Canadian boreal forest[J].Agricultural and Forest Meteorology,1998,92(4):211-225.
  • 9LU G Y,WONG D W.An adaptive inverse-distance weighting spatial interpolation technique[J].Computers&Geosciences,2008,34(9):1044-1055.
  • 10REYES J M,SERRE M L.An LUR/BME framework to estimate PM 2.5 explained by on road mobile and stationary sources[J].Environmental Science&Technology,2014,48(3):1736-1744.

二级参考文献30

  • 1朱会义,刘述林,贾绍凤.自然地理要素空间插值的几个问题[J].地理研究,2004,23(4):425-432. 被引量:179
  • 2杨德伟,陈治谏,倪华勇,蒋莉,廖晓勇.基于能值分析的四川省生态经济系统可持续性评估[J].长江流域资源与环境,2006,15(3):303-309. 被引量:37
  • 3Willmott C J, Robeson S M. Climatologically Aided Interpolation of Terrestrial Air Temperature[J].International Journal of Climatology, 1995, 15 (2) 221-229.
  • 4Koike K, Matsuda S, Gu B. Evaluation of Interpolation Accuracy of Neural Kriging with Application to Temperature-distribution Analysis[J].Mathematical Geology, 2001, 33(4): 421-448.
  • 5Nalder I A, Wein R W. Spatial Interpolation of Cli- mate Normals: Test of a New Method in the Canadian Boreal Forest[J]. Agric For Meteorol, 1998, 92:211-225.
  • 6侯景儒.矿床统计预测及地质统计学的理论与应用[M].北京:冶金工业出版社,1998.
  • 7de Cesare L, Myers D E, Posa D. Spatial-Temporal Modeling of SO2 in Milan District[C]. Geostatistics Wollongong'96, Dordrecht, 1996.
  • 8Rouhani S, Hall T J. Space-Time Kriging of Ground Water Data[C]. Geostatistics, Dordrecht, 1989.
  • 9Brown P E, Karesen K F, Roberts G O, et al. Blur-generated Non-separable Space-Time Models [J]. J Roy Statist SocB, 2000, 62:847-860.
  • 10Ma C. Families of Spatio-temporal Stationary Covariance Models[J]. J Stat Plan Infer, 2003, 116: 489-501.

共引文献47

同被引文献116

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部