期刊文献+

基于SMOTE算法与决策树的沙尘暴短期预警研究 被引量:2

The Short-term Forecasting Model of Sandstorms Based on SMOTE and Decision Tree Learning Algorithm
下载PDF
导出
摘要 针对沙尘暴灾害发生时间预测准确率较低、传统的预测模型预测效果欠佳问题,建立了基于SMOTE算法与决策树算法的沙尘暴预测模型.该模型利用西北六省的气象观测数据,较好地解决了稀有类的分类问题,总体预测成功率达到76.25%.研究结果表明该模型分类准确率高、泛化性能好、抗噪音、鲁棒性好,较好地解决了沙尘暴预测中不平衡样本的分类预测问题,可用于实际的沙尘暴预警. As the traditional algorithms are defective in forecasting the accuracy of sandstorm disaster , this paper established a forecasting model combined SMOTE algorithm with decision tree learning algo‐rithm .Using meteorological observation data of six provinces in Northwest China ,the classification of rare class is well solved ,and the predictive accuracy rate reaches 76 .25% .The results showed that the model can be used for the actual sandstorm warning with good classification accuracy ,generalization performance , robustness and anti‐noise properties in solving the classification problems of the unbalanced samples in the sandstorm forecasting .
出处 《徐州工程学院学报(自然科学版)》 CAS 2015年第3期40-46,共7页 Journal of Xuzhou Institute of Technology(Natural Sciences Edition)
基金 广东省自然科学基金项目(2014A030313575) 2015年广东大学生科技创新培育专项资金一般项目(308-GK151013)
关键词 沙尘暴预测 稀有类分类 SMOTE 决策树 sandstorms forecasting rare classes SMOTE decision tree learning algorithm
  • 相关文献

参考文献28

二级参考文献198

共引文献846

同被引文献54

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部