期刊文献+

用户感知的重复数据删除算法 被引量:7

User-Aware De-Duplication Algorithm
下载PDF
导出
摘要 通过大量的实验分析发现:在云桌面场景下,数据拥有者之间的工作相关度越大,则该用户之间存在重复数据的概率越大.基于该实验结果,提出了用户感知的重复数据删除算法.该算法打破了数据空间局部性特征的限制,实现了以用户为单位的更粗粒度的查重计算,可以在不影响重删率的前提下,减少5-10倍常驻内存指纹的数量,并可将每次查重计算的指纹检索范围控制在一个常数范围内,不随数据总量的增加而线性增加,从而有效避免了因为数据总量增加而导致内存不足的问题.除此之外,该算法还能根据存储系统的负载情况自动调整重复指纹检索范围,在性能与重删率之间加以平衡,从而更好地满足主存储场景的需要.原型验证表明,该算法可以很好地解决云计算场景下海量数据的重复数据删除性能问题.与Open Dedup算法相比,当数据指纹总量超出内存可用空间时,该算法可以表现出巨大的优势,减少200%以上的读磁盘操作,响应速度提升3倍以上. By doing a lot of experiments, if two users have more cross-project then they will own more duplication data at a virtual desktop instrument system. So, according to this finding, this paper proposes a user-aware de-duplication algorithm. This algorithm breaks the rule of data locality and can work at the new rule of user locality. According to the new rule, it just need load one user's finger print data into memory for each user group. So it can reduce 5x-10x memory requirements than other algorithm and it can control the searching scope in a limited number for each checking besides. So this algorithm can avoid a lot of read I/O operations. Meanwhile, this algorithm can adjust the searching scope dynamically according to the current workload of VDI system. Because it always tries to get the best de-duplication rate but not affect the response time of VDI system. The prototype experimental results show that it can improve the performance of de-duplication algorithm, especially when it used in a massive data storage system. Compared with OpenDedup, the algorithm can reduce more than 200% read I/O operations and can accelerate the response time more than 3x fast when the finger print data is bigger than available memory.
出处 《软件学报》 EI CSCD 北大核心 2015年第10期2581-2595,共15页 Journal of Software
基金 国家自然科学基金(61272454) 高等学校博士学科点专项科研基金(20130141110022)
关键词 重复数据删除 云计算 虚拟桌面云 I/O性能瓶颈 数据局部性 data deduplication cloud computing virtual desktop instrument I/O performance bottleneck data locality
  • 相关文献

参考文献5

二级参考文献159

  • 1Bhagwat D,Pollack K,Long DDE,Schwarz T,Miller EL,P-ris JF.Providing high reliability in a minimum redundancy archival storage system.In:Proc.of the 14th Int'l Symp.on Modeling,Analysis,and Simulation of Computer and Telecommunication Systems (MASCOTS 2006).Washington:IEEE Computer Society Press,2006.413-421.
  • 2Zhu B,Li K.Avoiding the disk bottleneck in the data domain deduplication file system.In:Proc.of the 6th Usenix Conf.on File and Storage Technologies (FAST 2008).Berkeley:USENIX Association,2008.269-282.
  • 3Bhagwat D,Eshghi K,Mehra P.Content-Based document routing and index partitioning for scalable similarity-based searches in a large corpus.In:Berkhin P,Caruana R,Wu XD,Gaffney S,eds.Proc.of the 13th ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining (KDD 2007).New York:ACM Press,2007.105-112.
  • 4You LL,Pollack KT,Long DDE.Deep store:An archival storage system architecture.In:Proc.of the 21st Int'l Conf.on Data Engineering (ICDE 2005).Washington:IEEE Computer Society Press,2005.804-815.
  • 5Quinlan S,Dorward S.Venti:A new approach to archival storage.In:Proc.of the 1st Usenix Conf.on File and Storage Technologies (FAST 2002).Berkeley:USENIX Association,2002.89-102.
  • 6Sapuntzakis CP,Chandra R,Pfaff B,Chow J,Lam MS,Rosenblum M.Optimizing the migration of virtual computers.In:Proc.of the 5th Symp.on Operating Systems Design and Implementation (OSDI 2002).New York:ACM Press,2002.377-390.
  • 7Rabin MO.Fingerprinting by random polynomials.Technical Report,CRCT TR-15-81,Harvard University,1981.
  • 8Rivest R.The MD5 message-digest algorithm.1992.http://www.python.org/doc/current/lib/module-md5.html.
  • 9U.S.National Institute of Standards and Technology (NIST).Federal Information Processing Standards (FIPS) Publication 180-1:Secure Hash Standard.1995.http://www.itl.nist.gov/fipspubs/fip180-1.htm.
  • 10U.S.National Institute of Standards and Technology (NIST).Federal Information Processing Standards (FIPS) Publication 180-2:Secure Hash Standard.2002.http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf.

共引文献206

同被引文献37

引证文献7

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部