期刊文献+

对两菌株SIJS传染病数学模型的分析

Analysis of the SIJS Mathematical Epidemic Model with Two Strains
下载PDF
导出
摘要 主要研究了带两菌株的SIJS传染病数学模型,通过对数学模型的分析,讨论了传染病的传播与消亡原理。首先,根据传染病的传播规律,建立带两菌株的SIJS传染病的数学模型;其次,给出基本再生数R0,并证明当R0<1时无病平衡点的渐近稳定性;最后,证明了当R0>1时,地方病平衡点局部渐近稳定。 In this paper, the epidemic mathematical SIJS model with two strains is studied, by analyzing the mathematical model, the principle of the demise and the spread of infectious diseases are discussed. Firstly, according to the propagation of infectious diseases, a epidemic mathematical SIJS model is established with two strains to the infectious diseases. Secondly, the basic reproductive number is established, and it is proved that if R0〈1, the disease-flee equilibrium is locally asymptotically stable and the disease dies out eventually. Finally, if Roll, a unique endemic equilibrium is locally asymptotically stable.
作者 钱德亮
机构地区 中原工学院
出处 《中原工学院学报》 CAS 2015年第4期65-68,共4页 Journal of Zhongyuan University of Technology
基金 国家自然科学基金项目(11401604) 中国博士后基金项目(2012M510885) 河南省基础与前沿研究计划项目(142300410251 142300410355) 河南省高等学校重点科研项目(15B110012 15A110045)
关键词 传染病模型 无病平衡点 地方病平衡点 稳定性 epidemic models disease-free equilibrium endemic equilibrium stability
  • 相关文献

参考文献7

二级参考文献16

  • 1李静,陆志奇,袁俊丽.具有外来感染者和急慢性阶段的流行病模型的动力学分析[J].生物数学学报,2007,22(2):298-304. 被引量:5
  • 2[1]J.Q.Li,Z.Ma,Qalititive analysis of SIS epidemic model with vaccination and varying total population size.Math.Computer modeling.35(2002),1235-1243.
  • 3[2]J.M.Lorca.H.W.Hethcote.Dynamics models of infectious diseases as regulators of population size.J.Math.Biol.,30(1992),693-761.
  • 4[3]Mimmo Iannelli,Mathematical Theory of Age-structured Population Dynamic,Applied Mathematics Monographs,Comitato Nazionale per le Science Mathematic,Consiglio Nazionale delle Ricerche(C.N.R.),Giardini Editiori,Pisa.,7(1995).
  • 5[4]R.M.Anderson,R.M.May.Population biology of infectious diseases.Nature.180(1979),361-367.
  • 6[5]X.Z.Li,G.Gupu G.T.Zhu,Threshold and stability results for an age structural SEIR epidemic model.comp.math.Appl.,42(2001),883-907.
  • 7[6]A.Ackleh,L.Allen,Competitive exclusion and coexistence for pathogens in an epidemic modelwith variable population size,J.Math.Biol.,47(2003),153-168.
  • 8[7]C.C.Castillo,H.Hethcote,V.Andreasen,Slenvin,W.M.Liu,Cross immunity in the dynamics of homogeneous and heterogeneous Populations,Populations.Mathmatical Ecology (Triese,1986),World Sci.Publ.Teaneck,NJ.,(1988),303-316.
  • 9[8]C.C.Castillo,W.Huang,J.Li,Competitive exclusion and coexistence of multiple strains in a SIS/SID model,SIAM.J.Math.,59(1999),1790-1811.
  • 10HYMAN J M, LI J, STANLEY E A. The differential infectivity and staged progression models for the transmission of HIV [ J ]. Mathematical Biosciences, 1999,155:77 - 109.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部