期刊文献+

点火靶尺度聚苯乙烯空心微球的球形度

Improving sphericity of polystyrene capsules with diameter of ignition targets
下载PDF
导出
摘要 为提高惯性约束聚变(ICF)点火靶尺度(约2mm)聚苯乙烯(PS)空心微球的球形度,研究了油相与外水相界面张力、初始油相质量分数和固化旋转流场转速对PS微球球形度的影响.结果表明,将双重乳液体系外水相中的表面活性剂聚乙烯醇(PVA)替换为聚丙烯酸(PAA)后,油相与外水相之间的界面张力增大了约10倍,PS空心微球的球形度显著提高,球形偏离度小于1μm 的微球比例由5%增加至约50%;但是,在较宽范围内改变油相初始质量分数及旋转固化流场转速,对PS微球球形度的影响并不显著,球形偏离度值小于1μm 的PS微球比例介于40%-60%之间. To improve the sphericity of large-diameter(about 2mm)polystyrene(PS)capsules for inertial confinement fusion targets,the effects of the interfacial tension between oil phase and outer water phase,the concentration of oil phase,and the speed of rotation flow field on the sphericity of PS capsules were investigated.The results show that,compared with polyvinyl alcohol(PVA),addition of poly(acrylic acid)(PAA)in the outer water phase leads about 10 times increase of interfacial tension between the oil phase and the outer water phase,resulting in a significant improvement of the sphericity of PS capsules.With the replacement of PVA with PAA,the batch yields of PS capsules with out-of-round(OOR)less than 1μm increased from about 5%to above 50%.However,changing the initial concentrations of the oil phase and the speeds of rotation flow field in a wide range did not affect the sphericity of PS capsules remarkably.Under typical operation conditions,the batch yields of the resulting PS capsules with OOR less than 1μm ranges from 40%to 60%.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2015年第9期130-135,共6页 High Power Laser and Particle Beams
基金 中国工程物理研究院科学技术发展基金项目(2014B0302052 2013B0302053)
关键词 乳液微封装 双重乳液 聚苯乙烯空心微球 球形度 界面张力 microencapsulation double emulsion polystyrene capsule sphericity interfacial tension
  • 相关文献

参考文献5

二级参考文献58

  • 1李波,陈素芬,张占文.内表面掺硅聚苯乙烯空心微球初步研究[J].强激光与粒子束,2004,16(8):1005-1008. 被引量:13
  • 2赵学森,高党忠,马小军,唐永建,张林,孙涛,董申.靶丸X射线数字图像的轮廓分析及功率谱评价[J].强激光与粒子束,2010,22(12):2925-2929. 被引量:4
  • 3李珺,韩光泽,郭平生.化学势的特征及外场作用下的普遍化表达形式[J].广西师范大学学报(自然科学版),2006,24(3):17-21. 被引量:6
  • 4Letts S A, Fearon E M, Buckley S R, et al. Fabrication of polymer shells using a depolymerizablemandrel[J]. Fusion Technology, 1995, 28(5): 1797-1801.
  • 5McQuillan B W, Nikroo A, Steinman D A, et al. The PAMS/GDP process for production of ICF target mandrel[J. Fusion Technology, 1997, 31(4): 381-384.
  • 6Nikroo A, Pontel J M. Fabrication of thin walled glow discharge polymer shellsER3. GA-A23339, 2000.
  • 7McQuillan B W, Greenwood A. Microencapsulation process factors which influence the sphericity of 1 mm o. d. poly(a-methylstyrene) shells for ICFCJ. Fusion Technology, 1999, 35(3) : 194-197.
  • 8Nagai K N, Nakajima M, Norimatsu T, et al. Solvent removal during curing process of highly spheric and monodispersed-sized polystyrene capsules from density-matched emulsions composed of water and benzene/1,2-dichloroethaneJ]. Journal of Polymer Science Part A .. Pol- ymer Chemistry, 2000, 38(18) : 3412-3418.
  • 9Takagi M, Cook R, Stephens R, et al. The effects of controlling osmotic pressure on a PAMS microencapsulated mandrel during curing-J]. Fusion Technoloe.a, 2000. 38(7), 54-57.
  • 10McQuillan B W, Eisner F H, Stephens R B, et al. The use of CaClz and other salts to improve surface finish and eliminate vacuoles in ICF microencapsulated shellsJ]. Fusion Technology, 1999, 35(3) : 198-201.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部