期刊文献+

原子力显微镜研究粘附分子与细胞膜上整合素分子的相互作用

AFM Measures the Interaction of Integrin with Adhesion Molecule
原文传递
导出
摘要 目的:研究肝癌细胞弹性变化对其表达的整合素分子与配体分子相互作用的影响。方法:以壳聚糖/聚丙烯酰胺水凝胶作为可变基底材料,并将人肝肿瘤细胞(Hep G2)接种到不同软硬度壳聚糖/聚丙烯酰胺水凝胶基底上,利用原子力显微镜力与距离模式定量测定不同软硬基底上生长的Hep G2肝瘤细胞膜表面整合素分子与层粘连蛋白分子之间相互作用力。结果:功能化的原子力显微镜探针与不同软硬基底上生长的细胞所产生的粘附情况不相同,细胞生长在培养皿的为对照组;细胞生长在硬度为1000Pa壳聚糖/聚丙烯酰胺水凝胶基底上的为实验组,表达在Hep G2肝瘤细胞膜上的α6β1整合素与其配体层粘连蛋白相互作用力的大小分别为19±7 p N和38.85±19.7 p N。结论:基底软硬度会影响细胞整合素与配体分子间的相互作用。 Objective: To study the interactions between integrin and their ligand by the hepatocellular carcinoma cell line with elastic changes. Methods: The chitosan/polyacrylamide hydrogel is a variable substrate material, and Hep G2 cells are planted on different rigidity of chitosan/polyacrylamide hydrogen substrates. Cell elasticity of Hep G2 in different rigidity substrate and the interaction force between integrin α6β1 and laminin(LN) under physiological conditions were detected by AFM force distance curve. Results: The main results obtained in this study as follows: The adhesions between atomic force microscope functional probe and the cell grown different soft and hard substrate were not the same. Cells grown in culture dishes were served as control group; cells growth in the hardness of1000 Pa chitosan/polyacrylamide hydrogel substrates for the experimental group. The adhesion proportion of cell is different because of the deviation of rigidity. The interaction force between integrinα6β1 and ligand(LN) are 19±7 p N and 38.85±19.7 p N. Conclusions:Substrate rigidity is a factor which affects the interaction of integrin with adhesion molecule.
出处 《现代生物医学进展》 CAS 2015年第27期5201-5203,5207,共4页 Progress in Modern Biomedicine
基金 国家自然科学基金项目(11172341) 第七届国家大学生创新实验计划(201310611065)
关键词 原子力显微镜 细胞弹性 受体/配体相互作用 整合素 Atomic force microscope Cell elasticity Receptor/Ligand interaction Integrin
  • 相关文献

参考文献20

  • 1Li QS, G YH, Lee CN, et al. AFM indentation study of breast cancer cells [J]. Biochem Biophys Res Commun, 2008, 374(4): 609-613.
  • 2Solon J, Levental YI, Sengupta K. Fibroblast Adaptation and Stiffness Matching to Soft. Elastic Substrates [J]. Biophys J, 2007, 93 (12): 4453 -4461.
  • 3Nijenhuis N, Zhao X, Carisey A, et al. Combining AFM and Acoustic Probes to Reveal Changes in the Elastic Stiffness Tensor of Living Cells[J]. Biophysical Journal, 2014, 107 (7): 1502-1512.
  • 4Lorenz B, Mey I, Steltenkamp S, et al. Elasticity mapping of pore-suspending native cell membranes [J]. Small, 2009, 5 (7): 832-838.
  • 5Denitsa D, Padula D, Schieker M, et al. Effect of collagen I and fibronectin on the adhesion, elasticity and cytoskeletal organization of prostate cancer cells [J]. Biochem Biophys Res Commun, 2010, 402 (2): 361-366.
  • 6吴贵生,叶志义.一种壳聚糖/聚丙烯酰胺水凝胶基底材料的研究[J].功能材料,2013,44(20):2949-2953. 被引量:3
  • 7Burnham N A, Chen X, Hodges C S, et al. Comparison of calibration methods for atomic-force microscopy cantilevers[J]. Nanoteehnology, 2003, 14(1): 1-6.
  • 8Sader J E, Larson I, Mulvaney P, et al. Method for the calibration of atomic-force microscope cantilevers[J]. Rev.Sci.Instnun, 1995, 66(7): 3789-3798.
  • 9Daniel J.M, Yves FD. Atomic force microscopy: a nanoseopic window on the cell surface[J]. Trends in Cell Biology, 2011, 21 (8):416-469.
  • 10Artur Z, Andrzej K. Determination of the Elastic Properties of Tomato Fruit Cells with an Atomic Force Microscope [J]. Sensors, 2013,13(9): 12175-12191.

二级参考文献22

  • 1张利,李玉宝,杨爱萍,左奕,吕国玉,魏杰.骨组织工程用纳米羟基磷灰石/壳聚糖多孔支架材料的制备及性能表征[J].功能材料,2005,36(2):314-317. 被引量:32
  • 2谭太贵,马景鑑,张文治,苏心,王立凯,冯喜增.神经干细胞在PLGA、壳聚糖和明胶膜表面的生长规律[J].中国生物医学工程学报,2006,25(3):377-381. 被引量:14
  • 3Rajagopalan p, Marganski W A. Brown X Q, et al. Direct comparison of the spread area, con-tractility, and migration of balb/ c 3T3 fibroblasts adhered to fibronectin and RGD-modified substrata [J]. Biophys J. 2004, 87: 2818-2827.
  • 4Radmacher M, Fritz. Kacher C M, et al. Measuring the viscoelastic properties of human platelets with the atomic forcemicroscope[J]. Biophys J, 1996, 700):556-567.
  • 5Lorenz B. Mey I, Steltenkamp S, et al. Elasticity mapping of pore-suspending native cell membranes [J]. Small, 2009, 5: 832-838.
  • 6Denitsa D. Padula D, Schieker M, et al. Effect of collagen I and fibronectin on the adhesion elasticity and cyto skeletal organization of prostate cancer cells [J]. Biochern Biophys Res Comrnun , 2010, 402: 361-366.
  • 7Engler A J, Sen S, Sweeney H L, et al. Matrix elasticity directs stem cell lineage specification [J]. Cell, 2006, 126: 677-689.
  • 8Stroka K M, Aranda-Espinoza H. Neutrophils display biphasic relationship between migration and substrate stiffness [J]. Cell Motil Cytoskel, 2009, 66 (6): 328-341.
  • 9Engler A J, Griffin M A, Sen S, et al. Myotubes differentiate optimally on substrates with tissue-like stiffness: Pathological implications for soft or stiff microenvironments [J]. Cell Bioi, 2004, 66:877-887.
  • 10Gaudet C, Marganski W A, Kim S, et al. Influence of type I collagen surface density on fibroblast spreading, motility, and contractility [J]. Biophys J, 2003, 85: 3329-3335.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部