期刊文献+

基于峰值匹配的SAR图像飞机目标识别方法 被引量:4

Recognition method of aircraft target in SAR image based on peak-value matching
下载PDF
导出
摘要 针对SAR图像飞机目标识别过程中的目标识别问题,提出一种基于峰值匹配的目标识别方法。该方法首先使用基于8邻域像素检测局部极大值的峰值提取方法提取目标和模板的峰值特征点;然后对目标进行方位角计算,设定置信区间从而缩小需要匹配的模板库;最后计算目标图像峰值点集与模板图像峰值点集的匹配代价函数,当匹配代价函数取最小值时表明目标与相应模板图像相匹配。实验结果表明该算法有效,且分类性能和分类效率较现有的一些算法有所提升。 A target recognition method based on peak?value matching is proposed for the recognition problems in recogni?tion process of aircraft target in synthetic aperture radar (SAR) image. This method adopts the peak?value extraction method based on local maximum value detected by 8?neighbourhood pixel to extract the peak?value feature points of the target and tem?plate. The azimuth angle of the target is calculated,and the confidence interval is set to shrink the template library which is needed to match. The marched cost functions of the peak point sets in target image and template image are calculated. The target is marched with the template image when the minimum value is get from the marched cost function. The experimental results show that the proposed method is effective. The classification performance and classification effectiveness were improved by this method in comparison with the existing algorithms.
出处 《现代电子技术》 北大核心 2015年第19期19-23,共5页 Modern Electronics Technique
关键词 合成孔径雷达 目标识别 方位角计算 峰值匹配 SAR target recognition azimuth angle calculation peak-value matching
  • 相关文献

参考文献12

  • 1计科峰,高贵,贾承丽,匡纲要,粟毅.一种利用方位角信息基于峰值匹配的SAR图像目标分类方法[J].信号处理,2005,21(z1):526-530. 被引量:3
  • 2KAPLAN L M.Improved SAR target detection via extended fractal features[J].IEEE Transactions on Aerospace and Electronic Systems,2001,37(2):436-451.
  • 3MUJDAT C,WILLIAM C K,DAVID A C.Evaluation of a regularized SAR imaging technique based on recognition-oriented features[C]//2000 SPIE Conference on Algorithms for Synthetic Aperture Radar ImageryⅦ.[S.l.]:SPIE,2000,4053:1112-1117.
  • 4METH R,CHELLAPPA R.Automatic classification of targets in synthetic aperture radar imagery using topographic features[C]//1996 SPIE Conference on Algorithms for Synthetic Aperture Radar ImageryⅢ.[S.l.]:SPIE,1996,2757:186-193.
  • 5BAJCSY P,CHAUDHURI A R.Benefits of high resolution SAR for ATR of targets In proximity[C]//Proceedings of 2002IEEE International Conference on Radar.[S.l.]:IEEE,2002:29-34.
  • 6HUMMEL R,ZUCKER S.On the foundations of relaxation labeling processes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1983,5(3):267-286.
  • 7WOLFSON H J.Geometric hashing:an overview[J].IEEE Computational Science&Engineering,1997,4(4):10-21.
  • 8METH R,CHELLAPPA R.Target matching in synthetic aperture radar imagery using non-linear optimization technique[C]//1999 SPIE Conference on Algorithms for Synthetic Aperture Radar Image.[S.l.]:SPIE,1999,3721:532-543.
  • 9张翠,郦苏丹,邹涛,王正志.一种应用峰值特征匹配的SAR图象自动目标识别方法[J].中国图象图形学报(A辑),2002,7(7):729-734. 被引量:6
  • 10VOICE L I,PATTON R,MYLER H R.Multicriterion vehicle pose estimation for SAR-ATR[C]//SPIE conference on Algorithms for Synthetic Aperture Radar Imagery VI.[S.l.]:SPIE,1999,3721:497-506.

二级参考文献5

  • 1[1]L.M.Novak, S. D.Halversen, G.J.Owirka, M.Hiett, Effects of polarization and resolution on SAR ATR, IEEE Transactions on Aerospace and Electronic Systems VOL.33, No. 1, Jan 1997,102-115
  • 2[7]T.D.Ross, S.W. Worrel, V. J.Velten, J.C.Mossing,M.L.Bryant, Standard SAR ATR evaluation experiments using the MSTAR public release data set, SPIE, Vol.3370,1998, 566-575
  • 3[8]www. mbvlab.wpafb.af. mil/public/sdms/datasets/mstar
  • 4[9]Isidore Rigoutsos, Robert Hummel, A Bayesian Approach to model matching with Geometric hashing, Computer vision and image understanding, Vol.62, No. 1, July, 1995,11-26
  • 5[10]R. Meth, R. Chellappa, target matching in synthetic aperture radar imagery using a nonlinear optmization technique, SPIE, Vol.3721, 1999, 532-542

共引文献6

同被引文献21

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部