期刊文献+

变环加权SIFT算法的图像拼接 被引量:1

Image mosaic based on SIFT algorithm of ring-conversion and weighting
下载PDF
导出
摘要 针对传统SIFT匹配算法数据量大、时间复杂度高的问题,提出基于尺度不变特征变换(SIFT)特征提取方法获得特征点,并采用变换步长的圆形区域选区对特征点进行描述,改进了SIFT特征的64维描述符和88维描述符的不足。将改进后的算法应用到图像拼接过程中,通过实验验证了改进后的方法在时间复杂度方面有所改善。 Since the traditional scale invariant and feature transform (SIFT) algorithm has large data size and high time complexity,a feature extraction method based on SIFT is proposed to acquire the feature points. The region in circular area with step?conversion is adopted to describe the feature points,and the insufficient of 64?dimensional descriptor and 88?dimensional descriptor of SIFT feature is improved. The improved algorithm was applied to image mosaic process. The experiment results veri?fy that this method has great improvement in the aspect of time complexity.
出处 《现代电子技术》 北大核心 2015年第19期72-75,78,共5页 Modern Electronics Technique
关键词 特征点 SIFT描述符 图像配准 图像拼接 feature point SIFT descriptor image registration image mosaic
  • 相关文献

参考文献8

  • 1LOWE D G.Object recognition from local scale-invariant features[C]//Proceedings of 1999 IEEE International Conference on Computer vision.Corfu:IEEE,1999:1150-1157.
  • 2LOWE D G.Distinctive image features from scale-invariant key points[J].International Journal of Computer vision,2004,60(2):91-110.
  • 3刘辉,申海龙.一种基于改进SIFT算法的图像配准方法[J].微电子学与计算机,2014,31(1):38-42. 被引量:14
  • 4章毓晋.图像工程:图像处理和分析[M].北京:清华大学出版社.1999.
  • 5TANG Chunming.Automatic registration based on improved sift for medical microscopic sequence images[C]//2008 SecondIEEE International Symposium on Intelligent Information Technology Application.[S.l.]:IEEE,2008,1:580-583.
  • 6吴建,马跃.一种改进的SIFT算法[J].计算机科学,2013,40(7):270-272. 被引量:17
  • 7CHALECHALE A,NAGHDY G,MERTINS A.Sketch-based image matching using angular partitioning systems[J].IEEE Transactions on Man and Cybernetics,Part A,2005,35(1):28-41.
  • 8陈虎.基于特征点匹配的图像拼接算法研究[J].海军工程大学学报,2007,19(4):94-97. 被引量:10

二级参考文献21

  • 1蔺想红,王维盛.一种基于特征匹配的全景图自动拼接方法[J].西北师范大学学报(自然科学版),2005,41(4):31-33. 被引量:7
  • 2侯舒维,郭宝龙.一种图像自动拼接的快速算法[J].计算机工程,2005,31(15):70-72. 被引量:42
  • 3庄志国,孙惠军,董继扬,陈忠.基于角点检测的图像匹配算法及其在图像拼接中的应用[J].厦门大学学报(自然科学版),2007,46(4):501-505. 被引量:19
  • 4孙华燕 周道炳 李生良.一种序列图像的拼接方法.光学精密工程,1999,(4):48-51.
  • 5STEIN G.Accurate internal cameraca libration using rotation with analysis of sources of error[C]// Proceedings of the 5th International Conference on Computer Vision.Cambridge MA,1995.
  • 6Lowe D G. Object recognition from local scale-invariant fea- tures[C]//Proceedings of the International Conference on Com- puter Vision. Corfu, 1999: 1150-1157.
  • 7Lowe D G. Distinctive Image Features from Scale-Invariant Key- points [J]. International Journal of Computer Vision, 2004, 60 (2) :91-110.
  • 8Tang C M, Dong Y, Su X H. Automatic Registration based on Improved SIFT for Medical Microscopic Sequence Images[J]. Second International Symposium on Intelligent Information Technology Application, 2008,1 : 580-583.
  • 9Hassan Foroosh,Josiane B Zerubia,Marc Berthod. Extension of phase correlation to sub pixel registration[J].IEEE T ransactions on Image Processing,2002,(03):188-200.
  • 10David G Lowe. Distinctive image features from scale-invariant key points[J].International Journal of Com-puter Vision,2004,(02):91-110.

共引文献40

同被引文献11

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部