期刊文献+

模糊数在链梯法索赔准备金中的应用 被引量:2

Application of Fuzzy Numbers in the Chain-Ladder Claims Reserveing
原文传递
导出
摘要 使用非对称的三角模糊数方法扩展了索赔准备金中经典的链梯法.我们得到损失进展因子和最终损失的新估计.使用模糊数的优点在于:感兴趣的变量的不确定性可以通过计算得到,并可以控制新的模糊索赔进展因子.主要集中在非对称三角模糊方法,以应对在一个方向上有更强偏差的情形. In this paper we extend the classical chain-ladder claims reserving method using asymmetric triangular fuzzy methods. We derive new estimators for the claims development factors as well as new predictors for the ultimate claims. The advantage in using fuzzy numbers lies in the fact that the uncertainty variables of interest can be calculated and also can be controlled by the "new"fuzzy claims development factors. This paper we mainly focuses on asymmetric triangular fuzzy methods in order to cope with stronger deviations in only one direction.
出处 《数学的实践与认识》 北大核心 2015年第17期106-112,共7页 Mathematics in Practice and Theory
基金 国家自然科学基金项目(11471091)
关键词 非对称三角模糊数 模糊不确定性 索赔准备金 链梯模型 最终索赔预测 asymmetric triangular fuzzy methods fuzzy uncertainty claims reserving chainladder model ultimate claims predictor
  • 相关文献

参考文献11

  • 1孟生旺.未决赔款准备金评估模型的比较研究[J].统计与信息论坛,2007,22(5):5-9. 被引量:7
  • 2孟生旺.非寿险准备金评估的广义线性模型[J].统计与信息论坛,2009,24(6):3-7. 被引量:12
  • 3Mack T. Distribution-free calculation of the standard error of chain ladder reserve estimates[J]. Astin Bull, 1993, 23(2): 213-225.
  • 4Wiithrich M V, Merz M. Stochastic Claims Reserving Methods in Insurance[M].Wiley Finance, 2008.
  • 5Zadeh L A. Fuzzy sets[J]. Inf Control, 1965, 8: 338-353.
  • 6Lemaire J. Fuzzy insurance[J]. Astin Bull, 1990, 20(1): 33-55.
  • 7Shapiro A F. Fuzzy logic in insurance [J]. Insurance Math Econom, 2004, 35(2): 399-424.
  • 8De AndrOs Sanchez J, Terceno Gomez A. Applications of fuzzy regression in actuarial analysis[J]. J Risk Insur, 2003, 70(4): 665-699.
  • 9De AndrOs Sanchez J. Calculating insurance claim reserves with fuzzy regression[J]. Fuzzy Sets and Systems, 2006, 157(23): 3091-3108.
  • 10Jochen H, Anne T. Combining chain-ladder claims reserving with fuzzy numbers[J]. Insurance: Mathematics and Economics, 2014, 55(10): 96-104.

二级参考文献12

  • 1Renshaw A E, VerraU R J. A stochastic model underlying the chain ladder technique[J]. British Actuarial Journal, 1998,14 (4) :903 - 923.
  • 2VerraU R J. A Bayesian generalized linear model for the Bornhuetter- Ferguson method of claims reserving [ J ]. North American Actuarial Journal, 2004,8(3) :67 - 89.
  • 3Kaas R, Goovaerts M, Dhaene J, Denuit M. Modem actuarial risk theory[M].2nd ed. New York: Springer,2008.
  • 4Faraway J J. Extending the linear modles with R[M]. New York: Chapman & Hall/CRC,Taylor & Francis Group, 2006: 115 - 116.
  • 5Taylor G C,Ashe F R. Second moments of estimates of outstanding claims[J ]. Journal of Econometrics, 1983,23 (1) :37 - 61.
  • 6HESS K T,SCHMIDT K D.A comparison of Models for the Chain-Ladder Method[J].Insurance:Mathematics and Economics,2002(31):351-364.
  • 7ENGLAND P D,VERRALL R J.Stochastic Claims Reserving in General inSurance[J].Institute of Actuaries and Faculty of Actuaries.2002:1-76.
  • 8KAAS R,GOOVAERTS M,DHAENE J,DENUIT M.Modern Actuarial Risk Theory[M].Kluwer Academic Publishers,2001:201-220.
  • 9RENSHAW A E,VERRALL R J.A Stochastic Model for the Chain Ladder Method[J].British Actuarial Journal,1998(14):903-923.
  • 10SCHMIDT K D.Methods and Models of Loss Reserving Based on Run-Off Triangle:a Unifying Survey[J].Casualty Actuarial Society Forum,Fall 2006:269-317.

共引文献16

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部