期刊文献+

一类具有细胞内时滞和免疫反应的病毒动力学模型

A VIRUS DYNAMICS MODEL WITH AN INTRACELLULAR DELAY AND IMMUNE RESPONSE
原文传递
导出
摘要 研究一类具有细胞内时滞和免疫反应的病毒感染模型,利用Lasalle不变集原理和构造Lyapunov函数方法证明:当基本再生数R_0<1时,未感染平衡点E_0全局渐近稳定,也即病毒消失;给出了边界平衡点E^0,E_1,E_2局部稳定性的充分条件和τ=0时正平衡点E_3的存在和全局渐近稳定性条件;最后,通过数值模拟验证了理论结果. A mathematical model on the control of viral infections with an intra- cellular delay and lytic and non-lytic immune responses is studied in this paper. By using the Lyapunov-LaSalle method, it is shown that the uninfected equilibrium Eo is globMly asymptoticMly stable if the basic reproduction number Ro 〈 1, in this case, the virus disappears; Some sufficient conditions for the local stability of the three boundary equilibria E0, El, E2, as well as the existence and globally asymptotic stability of the positive equilibrium E3 are given; Finally, some numerical simulations are provided to support the theoretical results.
出处 《系统科学与数学》 CSCD 北大核心 2015年第8期977-987,共11页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(11271314) 河南省自然科学基金(142300410198,142300410440) 河南省科技创新杰出人才计划项目(144200510021)资助课题
关键词 病毒动力学 时滞 CTL免疫 抗体应答 Virus dynamics, time delay, CTL immune, antibody response.
  • 相关文献

参考文献12

  • 1Kajiwara T, Sasaki T. A note on the stability analysis of pathogen-immune interaction dynamics. Discrete and Continuous Dynamical Systems-Series B, 1998, 4(3): 207-240.
  • 2Korobeinikov A. Global properties of basic virus dynamics models. Bulletin of Mathematical Biology, 2006, 66(4): 879-884.
  • 3Wang K, Wang W, Liu X. Global Stability in a viral infection model with lytic and nonlytic immune response. Computers and Mathematics with Applications, 2006, 51(9): 1593-1610.
  • 4Wang K, Wang W, Pang H, Liu X. Complex dynamic behavior in a viral model with delayed immune response. Physica-Section D, 2007, 226(2): 197-208.
  • 5Wang X, Song X Y. Global properties of model of immune effector responses to viral infections. Advances in Complex Systems (ACS), 2007, 10(4): 495-503.
  • 6Nelson P, Murray J, Perelson A. A model of HIV-1 pathogenesis that includes an intracellular delay. Mathematical Bioscience, 2000, 163(2): 201-215.
  • 7Nowak M A, Bangham C R. Population dynamics of immune responses to persistent viruses. Science, 1996, 272(5258): 74-79.
  • 8Hale J K, Verduyn Lunel S M. Introduction to Functional Differential Equations. New York: Springer-Verlag, 1993.
  • 9Beretta E, Kuang Y. Geometric stability switch criteria in delay differential systems with delay dependent parameters. SIAM Journal on Mathematical Analysis, 2002, 33(5): 1144-1165.
  • 10Geoff P. Vertically Transmitted Diseases: Models and Dynamics. The Quarterly Review of Biol- ogy, 1994, 69(4): 545-556.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部