摘要
研究一类具有细胞内时滞和免疫反应的病毒感染模型,利用Lasalle不变集原理和构造Lyapunov函数方法证明:当基本再生数R_0<1时,未感染平衡点E_0全局渐近稳定,也即病毒消失;给出了边界平衡点E^0,E_1,E_2局部稳定性的充分条件和τ=0时正平衡点E_3的存在和全局渐近稳定性条件;最后,通过数值模拟验证了理论结果.
A mathematical model on the control of viral infections with an intra- cellular delay and lytic and non-lytic immune responses is studied in this paper. By using the Lyapunov-LaSalle method, it is shown that the uninfected equilibrium Eo is globMly asymptoticMly stable if the basic reproduction number Ro 〈 1, in this case, the virus disappears; Some sufficient conditions for the local stability of the three boundary equilibria E0, El, E2, as well as the existence and globally asymptotic stability of the positive equilibrium E3 are given; Finally, some numerical simulations are provided to support the theoretical results.
出处
《系统科学与数学》
CSCD
北大核心
2015年第8期977-987,共11页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金(11271314)
河南省自然科学基金(142300410198,142300410440)
河南省科技创新杰出人才计划项目(144200510021)资助课题
关键词
病毒动力学
时滞
CTL免疫
抗体应答
Virus dynamics, time delay, CTL immune, antibody response.