摘要
对GF(3)上通过模加实现的新型自缩序列模型进行研究,得到序列周期上界为3n,下界为32?n 3?;线性复杂度上界为3n,下界为32?n 3?-1。对于本原三项式和四项式的自缩序列的周期和线性复杂度达到更优界值的概率分别为8 9和5 6。
A new self-shrinking model on GF(3) constructed with modular addition is presented. The upper bound of theperiod is 3n, the lower bound is 32[n/3], the upper bound of the linear complexity is 3n , the lower bound is 32[n/3]- l . For the period and complexity of primitive trinomials and primitive quarternomials, the probability achieving better bound value are 8/9, 5/6.
出处
《计算机工程与应用》
CSCD
北大核心
2015年第19期110-113,共4页
Computer Engineering and Applications
基金
国家自然科学基金(No.61070178)
关键词
自缩序列
周期
线性复杂度
本原三项式
本原四项式
self-shrinking sequence
period
linear complexity
primitive trinomials
primitive quarternomials