期刊文献+

分布相关的曲波阈值超声图像去噪方法 被引量:1

Curvelet denoising method of ultrasound images based on probability distribution
下载PDF
导出
摘要 散斑噪声作为超声图像的主要噪声严重影响超声成像质量,滤除散斑噪声是超声图像处理过程中重要步骤。以曲波阈值去噪方法为基础,针对常用阈值函数中对较小曲波系数处理粗糙、不连续、收敛慢的缺点,通过分析实际超声图像中散斑噪声的分布,提出了具有与实际噪声分布相关特点的曲波阈值去噪方法。对比测试实验结果表明,曲波去噪方法相比其他去噪方法在不同噪声水平下均具有更加稳定优异的去噪性能,峰值性噪比提高了1~2 d B,平均结构相识度相比也有较大的提高。 Speckle noise is the main noise which seriously attects me quamy ot utu^t~,~ ~ t- is an important step for medical ultrasound image processing. A new curvelet denoising method based on the probability distribution of speckle is proposed, to improve the performance of the threshold function's continuity and astringency. Comparative results show that the proposed method has stable and outstanding performance at different noise levels. The method always has better Mean Structural Similarity Index Map (MSSIM) and increases the Peak Signal to Noise Ratio (PSNR) about 1-2 dB.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第19期189-193,共5页 Computer Engineering and Applications
基金 国家科技支撑计划(No.2012BAI13B02) 江苏省基础研究计划(No.BK2011332)
关键词 超声图像 曲波 散斑噪声去噪 噪声分布 ultrasound image curvelet speckle noise reduction noise probability distribution
  • 相关文献

参考文献15

  • 1万明习,宗瑜瑾,王素品.生物医学超声学[M].北京:科学出版社,2010:652-654.
  • 2Devarapu K V,Murala S,Kumar V.Denoising of Ultrasound Images using Curvelet Transform[C]//Proceedings of the 2nd International Conference on Computer and Automation Engineering(ICCAE),2011:447-451.
  • 3Candès E,Demanet L,Donoho D,et al.Fast discrete curvelet transforms[J].Multiscale Modeling&Simulation,2006,5(3):861-899.
  • 4李伟,杨航.曲波域经验Wiener滤波[J].吉林大学学报(理学版),2013,51(2):312-316. 被引量:2
  • 5Candès E,Demanet L,Ying L.Curve Lab toolbox user’s guide.Version 2.0.3.
  • 6栗鸣,郭东敏,权建峰,郑小燕.基于提升小波的改进半软阈值降噪方法[J].探测与控制学报,2009,31(4):54-57. 被引量:19
  • 7周西峰,朱文文,郭前岗.基于渐近半软阈值函数的超声信号去噪方法[J].探测与控制学报,2011,33(2):35-39. 被引量:42
  • 8Chen Y,Raheja A.Wavelet lifting for speckle noise reduction in ultrasound images[C]//Proceedings of the Conference on Engineering in Medicine and Biology Society(IEEE-EMBS 2005),2005:3129-3132.
  • 9王文波,羿旭明,费浦生.基于曲波系数相关性的去噪算法[J].光电子.激光,2006,17(12):1519-1523. 被引量:11
  • 10Wang Z,Alan C,Sheikh H R,et al.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):1-14.

二级参考文献24

  • 1张学帅,潘泉,赵永强,史慧荣.基于静态多小波变换的图像融合[J].光电子.激光,2005,16(5):605-609. 被引量:10
  • 2叶裕雷,戴文战.一种基于新阈值函数的小波信号去噪方法[J].计算机应用,2006,26(7):1617-1619. 被引量:47
  • 3邱刚,闵晓勇,雷玉勇,马超,谢艳辉.基于多尺度阈值技术的小波去噪[J].现代电子技术,2006,29(17):87-89. 被引量:10
  • 4Donoho D L, Jonestone I M. Adapting to Unknown Smoothness via Wavelet Shrinkage [J] J Am Stat Assoc, 1995, 90: 1200-1224.
  • 5Candes E J, Demanet L, Donoho D I., et al. Fast Discrete Curvelet Transform [J]. Muhiscale Modeling g- Simulation, 2006, 5(3): 861-899.
  • 6Candes E J, Donoho D I.. Curvelets: A Surprisingly Effective Non-adaptiverep Resentation for Objects with Edges [R/OL]. http://www, stat. stanford, edu/candes/papers/curvelet-smstyte, pdf.
  • 7Mallat S. A Wavelet Tour of Signal Processing [M]. San Diego: Academic Press, 1998.
  • 8Gastal E S L, ()liveira M M. Domain Transform for Edge-Aware Image and Video Processing, on Graphics [C]//Proceedings of SIGGRAPH. Vol. 710. New York: ACM Press, 2011.
  • 9Michailovich O V. An Iterative Shrinkage Approach to Total-Variation Image Restoration [J]. Process, ACM Transactions IEEE Trans Image2011, 20(5): 1281-1299.
  • 10Michailovich () V. An Iterative Shrinkage Approach to Total-Variation Image Restoration [J] IEEE Trans Image Process, 2011, 20(5): 1281-1299.

共引文献80

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部