期刊文献+

面向三维机翼性能的超临界翼型优化设计方法 被引量:8

Aerodynamic optimization method of supercritical airfoil geared to the performance of swept and tapered wing
原文传递
导出
摘要 本文考虑超临界机翼的当地后掠角和当地曲率影响,对带梢根比后掠超临界机翼的二维翼型/三维机翼压力分布的修正转换关系进行了验证,基于此理论发展了面向三维机翼性能的翼型优化设计方法(2.75D方法),并由此获得性能良好的超临界机翼外翼段设计.将此方法的优化设计结果与传统二维转三维设计方法(2.5D方法)以及三维机翼直接优化方法(3D方法)进行了对比.结果表明,相对于传统二维转三维方法,本文的2.75D方法针对当地后掠角和当地曲率进行了修正,可以体现梢根比效应,能够使得二维翼型与三维机翼外翼段相应截面的压力分布形态更加吻合,因此更好地反映三维性能,从而在优化设计中获得三维性能更优的机翼;另一方面,与三维优化设计方法相比,采用2.75D方法进行优化则大大提高了优化效率. This paper presents an aerodynamic optimization method of supercritical airfoil geared to the performance of a swept and tapered wing based on a revised pressure coefficient transformation equation, which considers the tapered/swept effects and the influence of local swept angle, as well as the local curvature effects of supercritical wing. The airfoil optimized by the present method(2.75 D method) is assembled to the outboard part of a supercritical wing of a wide body civil airplane. An outboard part of supercritical wing with good performance is achieved through this optimization method. The result of optimization design using 2.75 D method is compared with traditional two- to three-dimensional transformation design method(2.5D method) and full three-dimensional optimization design method(3D method). The comparison results show that, when compared with 2.5D method, because of considering local swept angle and local curvature revision, the 2.75 D method presented in this paper can reflect the tapered effects of three-dimensional wing in airfoil design, and has better agreement between the pressure distribution of airfoil and the corresponding section on the three-dimensional wing, so that better three-dimensional wing will be found in the optimization; on the other hand, when compared with full three-dimensional design method, the presented 2.75 D method will greatly improve the optimization efficiency.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2015年第10期84-96,共13页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家重点基础研究发展计划(编号:2014CB744801) 国家自然科学基金(批准号:11102098,11372160)资助项目
关键词 超临界翼型 当地后掠角 当地曲率 二维/三维转换 优化设计 supercritical airfoil local sweep angle local curvature 2D/3D transformation optimization design
  • 相关文献

参考文献20

  • 1Obert E. Aerodynamic Design of Transport Aircraft. Amsterdam: IOS Press, 2009.517-537.
  • 2陈迎春,宋滨,刘洪.民用飞机总体没计.上海:上海交通人学出版社,2010.237—250.
  • 3Zhang Y F, Chen H X, Zhang M, et al. Supercritical wing design and optimization for transonic civil airplane. AIAA Paper, 2011, AIAA 2011-27.
  • 4张宁E.壤]:先进CFD方法的民用客机气动优化设计.博士学位论文.北京:清华大学.2010.
  • 5Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Cornput. 2002. 6: 182-197.
  • 6Li W, Krist S, Campbell R. Transonic airfoil shape optimization in preliminary design environment. J Aircraft, 2006, 43:639-651.
  • 7Vavalle A, Qin N. Iterative response surface based optimization scheme for transonic airfoil design. J Aircraft, 2007, 44:365-376.
  • 8Vassberg J C, DeHaan M A, Rivers S M, et al. Development of a common research model for applied CFD validation studies. AIAA Paper2008, AIAA 2008-6919.
  • 9Lock R C. An Equivalence Law Relating Three- And Two-Dimensional Pressure Distributions. London: Her Majesty'S Stationery Office, 1964. R&M 3346.
  • 10Van der Velden A J M, Kroo I. A numerical method for relating two- and three-dimensional pressure distributions on transonic wings. AIAA Paper, 1990, AIAA-90-3211-CP.

二级参考文献31

  • 1Koc S, Kim H J, Nakahashi K. Aerodynamic design of complex configurations with junctions. Journal of Air- craft, 2006, 43(6): 1838-1844.
  • 2Kim H J, Nakahashi K. Surface mesh movement for aero- dynamic design of body-installation junction. AIAA Jour- nal, 2007, 45(5) : 1138-1142.
  • 3Kanazaki M, Imamura T, Jeong S, et al. High-lift wing design in eonsideration of sweep angle effeet using kriging model. AIAA-2008-175, 2008.
  • 4Zhang Y F, Chen H X, Fu S. Computations of a twin-en- gine civil transporter using window embedment grid teeh- nique. AIAA-2008-169, 2008.
  • 5Hicks R M, Henne P A. Wing design by numerical opti- mization. Journal of Aircraft, 1978, 15(7): 407-412.
  • 6Lepine J, Guibault F, Trepanier J Y, et al. Optimized nonuniform rational B-spline geometrical representation for aerodynamic design of wings. AIAA Journal, 2001, 39 (11) : 2033-2041.
  • 7Mavriplis D J, Vassberg J C, Tinoco E N, et al. Grid quality and resolution issues from the drag prediction workshop series. AIAA-2008-930, 2008.
  • 8Harris C D. NASA supereritical airfoils. NASA TechnicalPaper 2969, 1990.
  • 9Obert E. Aerodynamic design of transport aircraft. Delft: Delft University Press, 2009.
  • 10Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans- actions on Evolutionary Computation, 2002, 6(2): 182-197.

共引文献30

同被引文献159

引证文献8

二级引证文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部