期刊文献+

DTI定量参数对脑肿瘤病理分级的研究 被引量:2

Research of Brain Tumor Pathology Classification based on DTI Quantitative Parameters
下载PDF
导出
摘要 探讨DTI在脑肿瘤分级中的应用价值,通过对FA值和ADC值的测量分析,发现DTI定量参数与脑肿瘤级别的关系,为临床应用提供信息。对19例经病理证实的不同等级脑肿瘤患者按肿瘤等级分组,对肿瘤实质区与对侧区正常脑组织的FA值和ADC值行配对t检验,比较肿瘤实质区与对侧区正常脑组织的差异;另就高、低级别脑肿瘤FA值和ADC值做独立样本t检验,分析差异。脑肿瘤患者组内肿瘤实质区较对侧正常脑组织FA值及ADC值均具有显著差异。低级别脑肿瘤较高级别脑肿瘤ADC值更低,且差异显著。脑肿瘤实质区FA值和ADC值可以帮助脑肿瘤区域与正常脑组织的界定,但对于脑肿瘤分级的应用价值尚有待考究。多模态图像的联合分析方法将成为脑肿瘤级别无创划分的新热点。 To investigate the value of DTI in brain tumor classification,the relationship between the DTI quantitative parameters and the level of brain tumor was studied by analysing the parameter values of FA and ADC,which can provide information for clinical application. 19 cases confirmed by pathology of tumor patients of different levels were divided into different groups according to the grades of tumor,the differences of the tumor nature area and the contralateral normal area were compared by using matching t test about FA and ADC values,the differences of the high and low level of brain tumors were analyzed by using independent sample t test about FA and ADC values. There were significant differences in FA and ADC values between the tumor nature area and the contralateral normal brain tissue of brain tumor patients. The ADC values of low levels of brain tumors were lower than that of high levels,and the differences were significant. Using FA and ADC values of brain tumor real area is helpful for distinguishing brain tumor areas and normal brain tissue,but whether it is effective for brain tumor classification remains to be confirmed. The conjoint analysis method of multimodal images will become a new hot spot of noninvasive brain tumor classification.
出处 《生物医学工程研究》 北大核心 2015年第3期144-147,共4页 Journal Of Biomedical Engineering Research
基金 中央高校基本科研业务费专项资金资助项目(NZ2013307) 江苏省临床医学科技专项基金资助项目(SBL201230215)
关键词 弥散张量成像 部分各向异性指数 表观扩散系数 脑肿瘤分级 多模态图像联合 Magnetic resonance diffusion tensor imaging(DTI) Fractional anisotropy(FA) Apparent diffusion coefficient(ADC) Brain tumor classification Multimodel image
  • 相关文献

参考文献13

  • 1江涛,马文兵,杨学军.脑胶质瘤治疗技术与进展[M].北京:人民卫生出版社,2011.
  • 2俞宙,陶玲,钱志余,武江芬,赵翠花.基于DTI复杂网络的两性大脑差异性研究[J].生物医学工程研究,2014,33(3):147-151. 被引量:2
  • 3Goebell E, Panstenbach S, Vaeterlein O, et al. Low - Grade and Anaplastic Gliomas: Differences in Architecture Evaluated with Dif- fusion -Tensor MR Imaging 1 [J]. Radiology, 2006, 239( 1 ) : 217 -222.
  • 4Tummala R P, Chu R M, Liu H, et al. Application of diffusion ten-sor imaging to magnetic - resonance - guided brain tumor resection [J]. Pediatric neurosurgery, 2003, 39 ( 1 ) : 39 - 43.
  • 5Coenen V A, Krings T, Mayfrank L, et al. Three -dimensional vi- sualization of the pyramidal tract in a neuronavigation system during brain tumor surgery : first experiences and technical note [J]. Neuro- surgery, 2001,49(1) : 86 -93.
  • 6Laundre B J, Jellison B J, Badie B, et at. Diffusion tensor imaging of the corticospinal Iract before and after mass resection as correlated with clinical motor findings: preliminary data[J]. American Journal of Neuroradiology, 2005, 26 (4) : 791 - 796.
  • 7Kono K, Inoue Y, Nakayama K, et al. The role of diffusion - weigh- ted imaging in patients with brain tumors [J]. American Journal of Neuroradiology, 2001, 22(6) : 1081 - 1088.
  • 8Arvinda H R, Kesavadas C, Sarma P S, et 81. Retracted Article: Glioma grading: sensitivity, specificity, positive and negative predic- tive values of diffusion and perfusion imaging[J]. Journal of Neuro - oncology, 2009, 94 ( 1 ) : 87 - 96.
  • 9Sinha S, Bastin M E, Whittle I R, et al. Diffusion tensor MR ima- ging of high - grade cerebral gliomas [J]. American Journal of Neu- roradio~ogy, 2002, 23(4) : 520- 527.
  • 10Mori S, Frederiksen K, van Zijl P, et al. Brain white matter anato- my of tumor patients evaluated with diffusion tensor imaging[J]. An- nals of Ncurotogy, 2002, 51(3) : 377 -380.

二级参考文献52

  • 1王欢,王世杰,鲍旭东.功能图像与解剖图像融合方法的研究[J].生物医学工程研究,2007,26(2):178-182. 被引量:2
  • 2Keles GE, Berger MS. Advances in neurosurgical technique in the current management of brain tumors. Semin Oncol, 2004,31 (5) : 659-665.
  • 3Gulani V, Sundgren PC. Diffusion tensor magnetic resonance ima- ging. J Neuroophthalmol, 2006,26(1) : 51 -60.
  • 4Kono K, Inoue Y, Nakayama K, et al. The role of diffusion- weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol, 2001,22(6) : 1081-1088.
  • 5Radner H, BBlumcke I, Reifenberger G, et al. The new WHO clas sification of tumors of the nervous system 2000. Pathology and genetics. Pathologe, 2002,23(4) :260-283.
  • 6Stadlbauer A, Nimsky C, Buslei R, et al. Diffusion tensor imaging and optimized fiber tracking in glioma patients: histopathologic evaluation of tumor-invaded white matter structures. Neuroimage, 2007,34(3) :949-956.
  • 7Louis DN, Holland EC, Cairncross JG. Glioma classification: a molecular reappraisal. Am J Pathol, 2001,159(3):779-786.
  • 8Arvinda HR, Kesavadas C, Sarma PS, et al. Glioma grading: sensitivity, specificity, positive and negative predictive values of diffusion and perfusion imaging. J Neurooncol, 2009,94(1):87-96.
  • 9Baehring JM, Bi WL, Bannykh S, et al. Diffusion MRI in the early diagnosis of malignant glioma. J Neurooncol, 2007,82(2) : 221-225.
  • 10Lam WW, Poon WS, Metreweli C. Diffusion MR imaging in glio ma: does it have any role in the pre-operation determination of grading of glioma? Clinl Radiol, 2002,57 (3) : 219-225.

共引文献24

同被引文献26

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部