期刊文献+

基于PSO-BP神经网络的纱线质量预测 被引量:14

Combining the Particle Swarm Optimization with BP Neural Network for Yarn Quality Forecasting
下载PDF
导出
摘要 针对复杂纺纱过程中成纱断裂强度难以预测的问题,提出一种基于粒子群优化算法(PSO)优化BP神经网络的成纱断裂强度预测方法.该方法采用PSO优化神经网络的权值和阈值,用来提高神经网络的收敛速度和获得全局最优解的能力.以纺纱车间大量现场质量检测数据为对象,进行预测验证,结果表明,PSO-BP神经网络在预测相关性(预测值与实际值的一致性程度)上与传统BP算法相比提高5.0%,与GA-BP算法相比提高4.6%,在预测精度上均要好于BP神经网络与GABP神经网络. In view of the predication difficulty of yarn breaking strength in the process of complex spinning,aprediction method based on particle swarm optimization(PSO)is put forward to optimize the yarn breaking strength of BP neural network.This method uses the PSO to optimize weights and threshold of neural network,improve convergence speed of neural network and obtain the ability of global optimal solution.A lot of field quality testing data in spinning workshop is taken as the objects to conduct the prediction verification.The results show that the prediction correlation(the degree of consistency between the actual values and estimated values)of PSO-BP neural network has been improved by 5.0% and 4.6%respectively compared with the traditional BP algorithm and GA-BP algorithm.Besides,it has higher prediction precision than BP neural network and GA-BP neural network.
出处 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第4期498-502,共5页 Journal of Donghua University(Natural Science)
基金 国家自然科学基金资助项目(51175077)
关键词 BP神经网络 粒子群算法(PSO) 纱线质量预测 BP neural network particle swarm optimization(PSO) yarn quality prediction
  • 相关文献

参考文献6

二级参考文献61

共引文献146

同被引文献132

引证文献14

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部