期刊文献+

青稞HbTsi1的克隆及其序列特征与表达特性分析 被引量:2

Cloning and Characterization of HbTsi1 in Tibetan Hulless Barley
下载PDF
导出
摘要 为了探究DREB类基因在青稞干旱胁迫下的表达模式,通过RT-PCR技术从抗旱品种‘喜马拉雅10号’中克隆其中的一个基因全长cDNA,并利用Real Time PCR方法研究其在干旱胁迫、复水条件下的表达情况。结果表明:从抗旱材料中克隆一个1 237bp全长cDNA序列,命名为HbTsi1(登录号:KJ699390)。生物信息学分析表明,该序列开放阅读框长为837bp,编码278个氨基酸序列,由HbTsi1的ORF推测所编码的蛋白,预测分子质量为30.33ku,等电点(pI)为6.11。Prosite Scan分析结果表明,该基因含有AP2/ERF domain profile家族特征基序、1个Bipartite nuclear localization signal profile、6个蛋白激酶C磷酸化位点、6个酪蛋白激酶Ⅱ磷酸化位点、5个N-豆蔻酰化位点、2个cAMP和cGMP依赖性的蛋白激酶磷酸化位点、2个氮糖基化位点。TMHMM预测该蛋白不含跨膜转移功能区。Signal IP3.0预测该蛋白没有信号肽,不属于分泌蛋白。PSORT亚细胞定位预测该基因所编码蛋白位于细胞质。推导的氨基酸序列同源比对分析结果表明,HbTsi1蛋白与短芒大麦的DREB蛋白具有较高的相似性。利用实时定量PCR方法研究HbTsi1在干旱胁迫条件下及复水后不同时间点的表达情况,发现HbTsi1在土壤绝对含水量为33.4%时表达量最高,随着土壤绝对含水量的下降而下调表达;当达到作物正常生长所需的土壤绝对含水量时又开始上调表达;进行干旱胁迫后(<15.5%)基因表达量下降;复水后8h时恢复至最高表达水平。说明,HbTsi1基因可能是青稞抗旱节水的关键基因。 In order to explore the expression patterns of DREB genes under drought stress in Tibetan Hulless barley, we cloned a full-length DREB gene cDNA by RT-PCR from the material of the drought barley variety ‘Himalaya 10 ’, and its expression under conditions of rehydration situation was studied through the use of Real Time PCR. The results showed that:a 1 237 bp cDNA sequence was cloned from a drought-resistant material, named HbTsil (GenBank accession No:K J699390). The sequence of the open reading frame was 837 bp, encoding a peptide of 278 amino acids, about 30.33 ku in molecular weight and with pI=6.11. Results from Prosite Scan indicated thatHbTsil contains mul-tiple loci of drought stress response cis-element such as AP2/ERF domain profile family signature motif site, one Bipartite nuclear localization signal profile site, six protein kinase C phosphorylation sites, six casein kinase Ⅱ phosphorylation sites, five N-myristoylation sites, two cAMP and cGMP dependent protein kinase phosphorylation sites, and two N-glycosylation sites. TMHMM predicted the protein without transmembrane transfer zone, and Signal IP 3.0 showed that the protein was not secreted proteins with no signal peptide. PSORT subcellular localization predicted the HbTsil protein was in the cytoplasm. Amino acid sequence homology to guide comparative analysis of the results showed that, HbTsil protein has a high similarity with Hordeum Breyisubulatum. Expression patterns of HbTsil were also investigated by RT-qPCR at serious waterlogging or drought and various time points after recovery. The highest expression level was observed in plants growing in soil absolute moisture 33. 4%, which may brought waterlogging to Tibet barley. As soil absolute moisture declined, transcripts decreased sharply. But when the soil water content turned to be normal for Hordeum vulgare (15. 5%), HbTsil restored to a higher level. When plants were drought stressed (〈15.5 % of absolute moisture), the gene were repressed again. After recovery from drought stress, the plants possessed the highest expression level ofHbTsil , which indicated theHbTsil gene may be the key gene of the Tibetan Hulless barley during the drought and water conservation.
出处 《西北农业学报》 CAS CSCD 北大核心 2015年第9期56-62,共7页 Acta Agriculturae Boreali-occidentalis Sinica
基金 973计划前期研究专项(2012CB723006) 国家科技支撑计划(2012BAD03B01 2013BAD30B01) 西藏财政专项(2014CZZ001)
关键词 青稞 干旱胁迫 HbTsi1 基因克隆 表达模式 Tibet barley Drought stress HbTsil Gene cloning Expression pattern
  • 相关文献

参考文献23

  • 1王忠华,贾育林,夏英武.植物抗病分子机制研究进展[J].植物学通报,2004,21(5):521-530. 被引量:30
  • 2Wang W, Vinocur B,Altman A. Plant responses todrought,salinity and extreme temperatures:towards geneticengineering for stress tolerance[J]. Planta,2003,218 :1-14.
  • 3陈金焕,夏新莉,尹伟伦.植物DREB转录因子及其转基因研究进展[J].分子植物育种,2007,5(F11):29-35. 被引量:26
  • 4Shinozaki K,Dennis E S. Cell signaling and gene regulationglobal analyses of signal transduction and gene expressionprofiles[j]. Current Opinion in Plant Biology, 2003. 6 : 405-409.
  • 5Matsukura S,Mizoi J, Yoshida D,et al. Comprehensiveanalysis of rice DREB2-type genes that encode transcriptionfactors involved in the expression of abiotic stress-respon-sive genes[J]. Molecular Genetics and Genomics,2010,283(2):185-196.
  • 6Chen M,Xu Z,Xia L. et al. Cold-induced modulation andfunctional analyses of the DRE-binding transcription factorgene GmDREB3 in soybean {Glycine max L. ) [J], Journalof Experimental Botany, 2009 ,60( 1) : 121-135.
  • 7Shen Y G, Zhang W K.HeS J,etal. An EREBP/AP2-typeprotein in Triticum aestivum was a DRE-binding transcrip-tion factor induced by cold, dehydration and ABA stress[J]. Theoretical and Applied Genetics,2003,106 ( 5) : 923-930.
  • 8Egawa C,Kobayashi F,Ishibashi M,et al. Differential regu-lation of transcript accumulation and alternative splicing ofa DREB2 homolog under abiotic stress conditions in com-mon wheat[J], Genes and Genetic Systems, 2006,81 ( 2):77-91.
  • 9Oh S J,Kwon C W, Choi D W^et al. Expression of barleyHvCBF4 enhances tolerance to abiotic stress in transgenicrice[j]. Plant Biotechnology Journal, 2007 ,5(5) : 646-656.
  • 10Shan D P, Huang J G,Yang Y T,ei al. Cotton GhDREBlincreases plant tolerance to low temperature and is nega-tively regulated by gibberellic acid [J]. New Phytologist,2007,176(1):70-81.

二级参考文献122

  • 1刘欣,李云.转录因子与植物抗逆性研究进展[J].中国农学通报,2006,22(4):61-65. 被引量:38
  • 2Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol, 2002, 130(2): 639-648.
  • 3Xiong L, Wang RG, Mao G, Koczan JM. Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic Acid. Plant Physiol, 2006, 142(3): 1065-1074.
  • 4Xu D, Duan X, Wang B, Hong B, Ho T, Wu R. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol, 1996, 110(1): 249-257.
  • 5Okamuro JK, Caster B, Villarroel R. The AP2 domain of APETALA2 define a large new family of DNA binding protein in Arabidopsis. Proc Natl Acad Sci USA, 1997, 94(13): 7076-7081.
  • 6Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREBI and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10(8): 1391-1406.
  • 7Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opinc Plant Biol, 2000, 3(3): 217-223.
  • 8Yamaguchi-Shinozakiaib K, Shinozaki K. A Novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature, or high-salt stress. Plant Cell, 1994, 6(2): 251-264.
  • 9Baker SS, Wilhelm KS, Thomashow MF. The 5'-region of Arabidopsis thaliana corl5a has cis-acting elements that confer cold-, drought-and ABA-regulated gene expression. Plant Mol Biol, 1994, 24(5): 701-713.
  • 10Choi DW, Zhu B, Close TJ, The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv. Dicktoo. Theor Appl Genet, 1999, 98(8): 1234-1247.

共引文献77

同被引文献32

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部