期刊文献+

Testing for Change Points in Partially Linear Models

Testing for Change Points in Partially Linear Models
原文传递
导出
摘要 In this paper we provide a method to test the existence of the change points in the nonparametric regression function of partially linear models with conditional heteroscedastic variance. We propose the test statistic and establish its asymptotic properties under some regular conditions. Some simulation studies are given to investigate the performance of the proposed method in finite samples. Finally, the proposed method is applied to a real data for illustration. In this paper we provide a method to test the existence of the change points in the nonparametric regression function of partially linear models with conditional heteroscedastic variance. We propose the test statistic and establish its asymptotic properties under some regular conditions. Some simulation studies are given to investigate the performance of the proposed method in finite samples. Finally, the proposed method is applied to a real data for illustration.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2015年第4期879-892,共14页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(No.11271080)
关键词 change point partially linear model heteroscedastic variance local linear regression bandwidthselection change point partially linear model heteroscedastic variance local linear regression bandwidthselection
  • 相关文献

参考文献25

  • 1Bai, J., Perron, P. Estimating and testing linear models with multiple structural changes. Econometrica, 66:47-78 (1998).
  • 2Chen, G.M., Yoon, K.C., Zhou, Y. Detections of changes in return by a wavelet smoother with conditional heteroscedastic volatility. J. Econometric, 143: 227-262 (2008).
  • 3Engle, R.F., Granger, C. W., Rice, J. and Weiss, A. Semiparametric estimates of the relation between weather and electricity sales. J. Amer. Statist. Assoc., 81: 310-320 (1986).
  • 4Eubank, R.L., Speckman, P.L. Nonparametric estimation of functions with jump discontinuities, IMS Lecture Notes. Change-Point Problems (E. Carlstein, H.G. Muller and D. Siegmund eds.), 23: 130-144 (1994).
  • 5Fan, J.Q., Gijbels, L. Local Polynomial Modeling and Its Applications. Chapman and Hall, London, 1996.
  • 6Fan, J.Q., Huang, T. Profile likelihood inferences on semiparametric varying-coefficient partially linear models. Bernoulli, 11: 1031-1057 (2005).
  • 7Gerard, G., Zouhir, H. Change point estimation by local linear smoothing. J. Multivariate Anal., 83: 56-83 (2002).
  • 8Gerard, G., Zouhir, H. Two non-parametric tests for change-point problems. Nonparametric Statist., 14: 87-112 (2002).
  • 9Gijbels, I., Lambert, A., Qiu, P.H. Jump-preserving regression and smoothing using local linear fitting: a compromise. Ann. Inst. Statist. Math, 59: 235—272 (2007).
  • 10Hall, P., Patil, P. Formulae for mean integrated squared error of nonlinear wavelet-based density estimators. Ann. Statist., 23: 905-928 (1985).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部