期刊文献+

Existence of Multi-peak Solutions for p-Laplace Problems in R^N

Existence of Multi-peak Solutions for p-Laplace Problems in R^N
原文传递
导出
摘要 In this paper we consider the p-Laplace problem V is a non-negative function satisfying certain conditionsand c is a small parameter. We obtain the existence of solutions concentrated near set consisting of disjoint components of zero set of V under certain assumptions on V when 〉 0 is small. In this paper we consider the p-Laplace problem V is a non-negative function satisfying certain conditionsand c is a small parameter. We obtain the existence of solutions concentrated near set consisting of disjoint components of zero set of V under certain assumptions on V when 〉 0 is small.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2015年第4期1061-1072,共12页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(No.11371117) the Natural Science Foundation of Hebei province(No.A2012402036)
关键词 p-Laplace problem existence of solutions variational method p-Laplace problem existence of solutions variational method
  • 相关文献

参考文献15

  • 1Alves, C.O. Existence of multi-peak solutions for a class of quasilinear problems in RN, to appear ??.
  • 2Byeon, J., Wang, Z.Q. Standing waves with a critical frequency for nonlinear Schrodinger equations. Arch. Rational Mech. Anal., 165: 295-316 (2002).
  • 3Cao, D., Noussair, E.S. Multi-bump standing waves with a critical frequency for nonlinear Schrodinger equations. J. Differential Equations, 203: 292-312 (2004).
  • 4Coti Zelati, V., Rabinowitz, P.H. Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. Amer. Math. Soc., 4: 693-727 (1991).
  • 5Dancer, E.N. Real analyticity and non-degeneracy. Math. Ann., 325: 369-392 (2003).
  • 6del Pino, M., Felmer, M. Semi-classical states for nonlinear Schrodinger equations. J. Funct. Anal., 149: 245-265 (1997).
  • 7del Pino, M., Felmer, M. Multi-peak bound states for nonlinear Schrodinger equations. Ann. Inst. H. Poincare, Anal. Nonlineaire, 15: 127—149 (1998).
  • 8DiBenedetto, E. C1+“ local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal., 7(8): 827-850 (1983).
  • 9Gilbarg, D., Trudinger, N.S. Elliptic Partial Differential Equations of Second Order, 2nd Edition, Grun-lehren, Vol. 224. Springer, Berlin, Heidelberg, New York, Tokyo, 1983.
  • 10Gui, C. Existence of multi-bump solutions for nonlinear Schrodinger equations via variational method. Comm. Partial Differential Equations, 21: 787-820 (1996).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部