期刊文献+

Minimizers of anisotropic Rudin-Osher-Fatemi models

Minimizers of anisotropic Rudin-Osher-Fatemi models
原文传递
导出
摘要 We give the explicit formulas of the minimizers of the anisotropic Rudin-Osher-Fatemi models Eφ1(U)=∫Ωφ°(Du)Dx+λ∫|u-f|dx,u∈BV(Ω) Eφ2(U)=∫Ωφ°(Du)Dx+λ∫(u-f)2dx,u∈BV(Ω),where Ω R2 is a domain, φ° is an anisotropic norm on R2, and f is a solution of the anisotropie 1-Laplaeian equations. We give the explicit formulas of the minimizers of the anisotropic Rudin-Osher-Fatemi models Eφ1(U)=∫Ωφ°(Du)Dx+λ∫|u-f|dx,u∈BV(Ω) Eφ2(U)=∫Ωφ°(Du)Dx+λ∫(u-f)2dx,u∈BV(Ω),where Ω R2 is a domain, φ° is an anisotropic norm on R2, and f is a solution of the anisotropie 1-Laplaeian equations.
机构地区 LMAM
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2015年第6期1355-1388,共34页 中国高等学校学术文摘·数学(英文)
基金 Acknowledgements The authors thank the referees for careful reading of the paper and useful suggestions which improve the presentation. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11271025, 11371038, 11431001).
关键词 Anisotropic Rudin-Osher-Fatemi (ROF) model Euler-Lagrange equation φ-curvature Anisotropic Rudin-Osher-Fatemi (ROF) model, Euler-Lagrange equation, φ-curvature
  • 相关文献

参考文献19

  • 1Alliney S. A property of the minimum vectors of a regularizing functional defined by means of the absolute norm. IEEE Trans Signal Process, 1997, 45: 913-917.
  • 2Ambrosio L, Fusco N, Pallara D. Functions of Bounded Variation and Free Discontinuity Problems. Oxford: Oxford University Press, 2000.
  • 3Andreu-Vaillo F, Ballester C, Caselles V, Mazon J M. Minimizing total variation flow. Differential Integral Equations, 2001, 14: 321-360.
  • 4Andreu-Vaillo F, Caselles V, Mazon J M. Parabolic Quasilinear Equations Minimizing Linear Growth Functionals. Basel-Boston-Berlin: Birkhauser, 2004.
  • 5Bellettini G. Anisotropic and crystalline mean curvature flow. In: Bao D, Bryant R L, Chern S S, Shen Z M, eds. A Sampler of Riemann-Finsler Geometry. Math Sci Res Inst Publ, 50. Cambridge: Cambridge Press, 2004, 49-82.
  • 6Bellettini G, Caselles V, Novaga M. The total variation flow in R^. J Differential Equations, 2002, 184: 475-525.
  • 7Chambolle A, Lions P L. Image recovery via total variation minimization and related problems. Numer Math, 1997, 76: 167-188.
  • 8Chan T F, Esedoglu S. Aspects of total variation regularized L1 function approximation. SIAM J Appl Math, 2005, 65: 1817-1837.
  • 9Chan T F, Esedoglu S, Nikolova M. Algorithms for finding global minimizers of denoising and segmentation models. SIAM J Appl Math, 2006, 66: 1632-1648.
  • 10Chan T F, Esedoglu S, Park F, Yip A. Total variation image restoration: overview and recent developments. In: Paragios N, Chen Y M, Faugeras O, eds. Handbook of Mathematical Models in Computer Vision. New York: Springer, 2006, 17-31.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部