期刊文献+

Values of binary linear forms at prime arguments 被引量:2

Values of binary linear forms at prime arguments
原文传递
导出
摘要 We investigate the exceptional set of real numbers not close to some value of a given binary linear form at prime arguments. Let λ1 and λ2 be positive real numbers such that λ1/λ2 is irrational and algebraic. For any (C, c) well-spaced sequence v and δ 〉 0, let E(v, X,δ ) denote the number of ν∈v with v ≤ X for which the inequality |λ1P1 + λ2P2 - v| 〈 v-δ has no solution in primes P1,P2. It is shown that for any ε 〉 0, we have E(V, X, δ) 〈〈 max(X3/5+2δ+ε, X1/3+4/3δ+ε). We investigate the exceptional set of real numbers not close to some value of a given binary linear form at prime arguments. Let λ1 and λ2 be positive real numbers such that λ1/λ2 is irrational and algebraic. For any (C, c) well-spaced sequence v and δ 〉 0, let E(v, X,δ ) denote the number of ν∈v with v ≤ X for which the inequality |λ1P1 + λ2P2 - v| 〈 v-δ has no solution in primes P1,P2. It is shown that for any ε 〉 0, we have E(V, X, δ) 〈〈 max(X3/5+2δ+ε, X1/3+4/3δ+ε).
作者 Yuchao WANG
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2015年第6期1449-1459,共11页 中国高等学校学术文摘·数学(英文)
关键词 Circle method Diophantine inequality Circle method, Diophantine inequality
  • 相关文献

参考文献8

  • 1Briidern J, Cook R J, Perelli A. The values of binary linear forms at prime arguments. In: Greaves G R H, Harman G, Huxley M N, eds. Sieve Methods, Exponential Sums, and Their Applications in Number Theory. London Math Soc Lecture Note Ser, 237. Cambridge: Cambridge Univ Press, 1997, 87-100.
  • 2Cai Y. A remark on the values of binary linear forms at prime arguments. Arch Math (Basel), 2011, 97(5): 431-441.
  • 3Cook R J, Harman G. The values of additive forms at prime arguments. Rocky Mountain J Math, 2006, 36(4): 1153-1164.
  • 4Davenport H, Heilbronn H. On indefinite quadratic forms in five variables. J Lond Math Soc, 1946, 21: 185-193.
  • 5Harman G. Diophantine approximation by prime numbers. J Lond Math Soc (2), 1991, 44(2): 218-226.
  • 6Lu W C. Exceptional set of Goldbach number. J Number Theory, 2010, 130(10): 2359-2392.
  • 7Matomaki K. Diophantine approximation by primes. Glasg Math J, 2010, 52(1): 87-106.
  • 8Montgomery H L, Vaughan R C. The exceptional set in Goldbach’s problem. Acta Arith, 1975, 27: 353-370.

同被引文献1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部