期刊文献+

相变条件对TB8钛合金显微组织及剪切性能的影响(英文) 被引量:2

Effect of Phase Transformation Conditions on the Microstructure and Shear Performance of TB8 Titanium Alloy
原文传递
导出
摘要 研究了TB8钛合金在不同热处理条件下的组织转变规律,并通过剪切实验分析了显微组织差异对于该合金剪切行为的影响。结果表明,热处理条件会影响TB8钛合金的显微组织,也会影响剪切变形行为。随着固溶处理温度升高,合金的晶粒明显变大,析出物的形貌也发生变化,剪切变形变得困难。固溶处理之后的时效温度对合金的剪切变形行为也有显著影响,在840℃固溶处理1 h之后,如果接着进行450℃/8 h时效处理,合金剪切变形所需的驱动力会降低;如果把时效热处理的温度提高到550℃,甚至更高(保温时间不变),那么剪切变形就会发生穿晶断裂。根据剪切检测结果可知,合金经过840℃/1 h固溶处理接着再进行500℃/8 h的时效处理可以获得优异的剪切性能,而且具有合理的显微组织。 Phase transformation of TB8 titanium alloy was studied under different heat treatment conditions; the effects of microstructure and phase composition on shear performance were investigated by microstructure characterization and fracture analysis. Results show that the heat treatment condition will affect the microstructure of TB8 titanium alloy, and also affect the shearing deformation behavior. With increasing of solution temperature, the size of grains increases obviously, the morphology of the precipitates also changes, and the starting of shearing deformation becomes difficult. The subsequent aging temperature after solution treatment will obviously influence the shearing deformation behavior of the alloy. After solution at 840 °C for 1 h followed by aging at 450 °C for 8 h, the driving force required for shear deformation will be decreased; when the subsequent aging temperature increases to 550 °C or more, shear fracture cut through grains. According to the results of shear tests, the alloy solutioned at 840 °C for 1 h followed by 500 °C/8 h aging can achieve an excellent shear performance with a reasonable microstructure.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2015年第9期2143-2147,共5页 Rare Metal Materials and Engineering
关键词 相变条件 剪切性能 钛合金 显微组织 phase transformation shear performance titanium alloy microstructure
  • 相关文献

参考文献15

  • 1Julien Da Costa Teixeira, Benoit Appo1aire, Elisabeth Aeby-Gautier et al. Materials Science and Engineering A[J], 2007, 448: 135.
  • 2Ma1inov S, Sha W, Guo Z et al. Materials Characterization[J], 2002,48:279.
  • 3Malinov S, Sha W, Markovsky P. Journal of Alloys and Compounds[J], 2003, 348: 110.
  • 4Jung Taek-Kyun, Semboshi Satoshi, Masahashi Naoya et al. Materials Science and Engineering C[J], 2013, 33: 1629.
  • 5Zhao Xingfeng, Niinomi Mitsuo, Nakai Masaaki et al. Materials Transactions[J], 2012, 53: 1379.
  • 6Boyer Rodney, Welsch Gerhard, Collings E W. Materials Properties Handbook: Titanium Alloys[M]. Materials Park, OH: ASM International, 1994: 10.
  • 7Schmidt P, E1-chaikh A, Christ H J. Metallurgical and Materials TransactionA[J], 2011, 42: 2652.
  • 8Huang X, Cuddy J, Goe1 N et al. Journal of Materials Engineering and Peiformance[J], 1994,3: 560.
  • 9Ge Peng, Zhao Y ongqing, Zhou Lian. Rare Metal Material and Engineering[J], 2006, 35(5): 707.
  • 10Jung Taekkyun, Semboshi Satoshi, Masahashi Naoya et al. Materials Science and Engineering C[J], 2013, 33: 1629.

同被引文献19

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部