摘要
Glass ceramics Ba2LaFT:xDy3+ are obtained through the conventional melt-quenching technique, and their lu- minescent properties are investigated. Under 350 nm excitation, the emission spectra consists of a strong blue- yellow band as well as a weak red emission centered at 660 nm, which are attributed to the 4F9/2 →6H15/2, 4F9/2→6H13/2 and 4F9/2 → 6Hll/2 transitions of the Dy3+ ion, respectively. The corresponding Commission Internationale de L'Eclairage (CIE) chromaticity coordinate for a sample of 2 mol.% Dy203 after being heat-treated at 690℃ is (0.313, 0.328). It is concluded that the formed materials may have the possibility of applications for white light-emitting diodes (LEDs).
Glass ceramics Ba2LaFT:xDy3+ are obtained through the conventional melt-quenching technique, and their lu- minescent properties are investigated. Under 350 nm excitation, the emission spectra consists of a strong blue- yellow band as well as a weak red emission centered at 660 nm, which are attributed to the 4F9/2 →6H15/2, 4F9/2→6H13/2 and 4F9/2 → 6Hll/2 transitions of the Dy3+ ion, respectively. The corresponding Commission Internationale de L'Eclairage (CIE) chromaticity coordinate for a sample of 2 mol.% Dy203 after being heat-treated at 690℃ is (0.313, 0.328). It is concluded that the formed materials may have the possibility of applications for white light-emitting diodes (LEDs).
基金
supported by the National Natural Science Foundation of China(Grant Nos.61275180 and51472125)
the K.C.Wong Magna Fund of Ningbo University