期刊文献+

欧龙布鲁克微地块下奥陶统复理石物源和构造背景研究 被引量:8

Provenance and tectonic background of the Lower Ordovician flysch in Oulongbuluke microplate
下载PDF
导出
摘要 利用地球化学测试资料,依据大地构造学理论,对大煤沟剖面石灰沟组碎屑岩物源区性质及构造属性进行研究。结果表明:石灰沟组砂岩具有中等风化、快速堆积的特点,碎屑物质来源于上地壳酸性岩类,形成于活动大陆边缘构造背景;早奥陶世晚期,碎屑物质来自南侧滩问山陆-弧碰撞带的复理石向北的远端超覆,造成欧龙布鲁克微地块南缘大煤沟-城墙沟一带发生沉积岩、沉积相类型乃至沉积体系的转换;研究区不晚于488~471Ma进入陆-弧碰撞阶段,寒武纪-早奥陶世,欧龙布鲁克海盆处于弧后位置,并非是被动大陆边缘盆地,而是与洋陆俯冲陆-弧碰撞有关的弧后盆地。 Using the geochemistry data, provenance property and structural attributes of Shihuigou formation clastic rocks from Dameigou outcrop were studied under the guidance of the sedimentary geotectonic theories. The results indicate that the provenance of the Shihuigou Formation with characteristics of moderately weathered and rapid accumulation is the upper crust acidic rocks, deposited in the active continental margin tectonic setting. From the early period of Early Ordovician, detrital material from Tanjianshan arc-continental collision zone distal overlapped from the south to the north, leading to the transition of sedimentary petrology types,sedimentary facie types and sedimentary system;By 488-471 Ma, the study area had entered into the stage of continental-arc collision period;During the Cambrian to Early Ordovician period, the Oulongbuluke sea ba-sin was located in the back-arc position, which is not a passive continental margin basin, but a back-arc basin related to the subduction-arc collision.
出处 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第5期27-35,共9页 Journal of China University of Petroleum(Edition of Natural Science)
基金 国土资源地调项目(资[2014]03-025-002 12120113040000-3)
关键词 欧龙布鲁克微地块 下奥陶统 复理石 地球化学 柴北缘洋 弧陆碰撞 Oulongbuluke microplate Lower Ordovician flysch geochemistry North Qaidam Ocean arc-continental collision
  • 相关文献

参考文献18

  • 1鲁洪波,姜在兴.稀土元素地球化学分析在岩相古地理研究中的应用[J].石油大学学报(自然科学版),1999,23(1):6-8. 被引量:74
  • 2余烨,张昌民,李少华,朱锐,杜家元,王莉.惠州凹陷珠江组泥岩地球化学特征及其地质意义[J].中国石油大学学报(自然科学版),2014,38(1):40-49. 被引量:17
  • 3孙娇鹏,陈世悦,彭渊,胡忠亚,庄毓凯,马帅,刘姚.全吉地区新元古代滨岸冰川沉积特征及地质意义[J].地质学报,2014,88(7):1334-1340. 被引量:15
  • 4COX R,LOWE D R, CULLERS R L. The influence ofsediment recycling and basement composition on evolutionof mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta,1995,59(14):2919-2940.
  • 5NESBITT H W, YOUNG G M. Early proterozoic climatesand plate motion inferred from major element chemistry oflutites[J]. Nature,1982,299:715-717.
  • 6PETTIJOHN F J,POTTER P E, SIEVER R. Sand andsandstone[M]. New York:Springer-Verlag,1972:618.
  • 7ROSER B P, KORSCH R J. Determination of tectonicsetting of sandstone-mudstone suites using SiO2 contentand K2O/ Na2 O ratio[J]. Journal of Geology,1986,94:635-650.
  • 8BHATIA M R, CROOK K W. Trace element characteris-tics of greywackes and tectonic setting discrimination ofsedimentary basins[J]. Contribution to Mineralogy andPetrology,1986,92:181-193.
  • 9GIRTY G H, RIDGE D L,KNAACK C,et al. Prove-nance and depositional setting of Paleozoic chert and ar-gillite,Sierra Nevada,California[J]. Journal of Sedimen-tary Research,1996,66(1):107-118.
  • 10MCLENNAN S M, HEMMING S, MCDANIEL M J, etal. Geochemical approaches to sedimentation, prove-nance and tectonics[C] / / JONHANSON M J. ProcessesControlling the Composition of Clastic Sediments. Boul-der:Geological Society of America,1993:21-40.

二级参考文献70

共引文献160

同被引文献172

引证文献8

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部