期刊文献+

关于解一类奇异非线性方程组的牛顿法的收敛性

Convergence Property of Newton's Method for Solving a Class of Singular Nonlinear Equations
下载PDF
导出
摘要 对一类奇异非线性方程组,运用Moore-Penrose广义逆建立牛顿迭代法,分析了其局部收敛性、半局部收敛性以及收敛半径的估计,数值例子也表明了算法的有效性. Moore-Penrose inverse was used to construct Newton's method for solving a class of singular nonlinear equations. The local and semilocal convergence were established,and the radius of convergence ball was also obtained. The validity of the algorithm was indicated by a numerical example.
出处 《郑州大学学报(理学版)》 CAS 北大核心 2015年第3期1-6,共6页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金资助项目 编号70901073 中央高校基本科研业务费专项资金资助项目 编号JGK101676
关键词 奇异非线性方程组 牛顿法 MOORE-PENROSE逆 半局部收敛 singular nonlinear equations Newton's method Moore-Penrose inverse semilocal convergence
  • 相关文献

参考文献12

  • 1贺婷婷,马飞遥.两个非线性偏微分方程强解的持续性质[J].郑州大学学报(理学版),2015,47(1):14-23. 被引量:1
  • 2Hernandez M A. Newton-Raphson' s method and convexity [ J ]. Zb Rad Prirod: Mat Fak Ser Mat, 1992,22 ( 1 ) : 159 - 166.
  • 3Dedieu J P. Estimations for the separation number of a polynomial system [ J ]. J Symbolic Comput, 1997,24 (6) :683 -693.
  • 4Decker D W, Keller H B, Kelley C T. Convergence rates for Newton' s method at singular points [ J ]. SIAM J Numer Anal, 1983, 20(2) :296 -314.
  • 5Griewank A. On solving nonlinear equations with simple singularities or nearly singular solutions [ J ]. Siam Rev, 1985,27 (4) : 537 - 563.
  • 6Allgower E L, Bohmer K. Resolving singular nonlinear equations [ J ]. Rocky Mount J Math, 1988,18 ( 2 ) :225 - 268.
  • 7吴国桢,王金华.关于奇异非线性方程组的Newton法的收敛性[J].浙江大学学报(理学版),2008,35(1):27-31. 被引量:7
  • 8Kantorovich L V, Akilov G P. Functional Analysis [ M ]. Oxford : Pergamon Press, 1982:536 - 544.
  • 9Smale S. Newton' s method estimates from data at one point [ M ]//Ewing R E, Gross K I, Martin C F. The Merging of Disci- plines : New Directions in Pure, Applied and Computational Mathematics. New York : Springer, 1986 : 185 - 196.
  • 10Traub J F, W6zniakowski H. Convergence and complexity of Newton iteration for operator equations [ J ]. J Assoc Comput Math, 1979,26(2) :250 - 258.

二级参考文献31

  • 1朱静芬,韩丹夫.“牛顿类”迭代的收敛性和误差估计[J].浙江大学学报(理学版),2005,32(6):623-626. 被引量:10
  • 2王兴华.Newton方法的收敛性[J].科学通报(数理化专辑),1980,25:36-37.
  • 3DECKER D W, KELLEY C T. Convergence rates for Newton's mathod at singular points[J]. SIAM J Nuner Anal, 1983,20:296-314.
  • 4GRIEWANK A. On solving nonlinear equations with simple singulartise or nearly singular solutions[J]. SIAM Rev, 1985,27.537-563.
  • 5ALLGOWER E L, BoHMER K. Resolving singular nonlinear equations[J]. Rocky Mount Math J, 1987, 18:225-268.
  • 6KANTOROVICH L V, AKILOV G P. Functional Analysis[M]. Oxford: Pergamon, 1982.
  • 7SMALE S. Newton's method estimates from data at one point[C]//EWlNG K, GROSS K, MARTIN C. The Merging of Disciplines: New Directions in Pure, Applied and Computational Mathematics, New York: Springer, 1986 : 185-196.
  • 8TRAUB J F, WOZNIAKOWSKI H. Convergence and complexity of Newton iteration[J]. J Assoc Comput Math, 1979,29:250-258.
  • 9WANG G R, WEI Y M, QIAO S Z. Generalized Inverse: Theory and Computations[M]. Beijing: Science Press, 2004.
  • 10WANG X H. Convergence of Newton's method and inverse function theorem in Banaeh space[J]. Math Comput, 1999,68 : 169-186.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部