期刊文献+

一类具有脉冲免疫的时滞SIRS传染病模型的全局分析 被引量:1

Global Analysis of a Delay SIRS Epidemic Disease Model with Pulse Vaccination
下载PDF
导出
摘要 研究一类具有积分时滞的SIRS传染病动力学模型在脉冲免疫接种条件下的动力学行为.运用离散动力系统的频闪映射,获得一个"无病"周期解,证明该"无病"周期解是渐近稳定的.当模型的参数在适当条件下,该"无病"周期解是全局吸引的.运用脉冲时滞泛函微分方程理论获得带时滞系统持久性的充分条件,也得到该模型的全局吸引性条件. An SIRS epidemic disease model with pulse vaccination and integral delays was considered,and dynamics behaiors of the model under pulse vaccination were analyzed. By use of the discrete dynamical system determined by the stroboscopic map,an "infection-free"periodic solution was obtained and it iwas shown that the‘infection-free'periodic solution was asymptotic stability. Then,it was proved that when some parameters of the model were in appropriate condictions,the ‘infection-free'periodic sollution was globally attractive. Futher,with the theory on delay functional and impulsive differential equation,sufficient condiction with time delay for permanence of the system was given. At the same time,the condition of the global attractivity of the model was obtained.
出处 《郑州大学学报(理学版)》 CAS 北大核心 2015年第3期43-48,54,共7页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金资助项目 编号11261013 广西高校科研项目 编号KY2015ZD043
关键词 脉冲免疫 周期解 持久性 积分时滞 全局吸引性 pulse vaccination periodic solution permanence integral delays global attractivity
  • 相关文献

参考文献12

  • 1于育民,宋苏罗.一类SEIRS传染病模型的研究[J].郑州大学学报(理学版),2011,43(2):4-9. 被引量:3
  • 2D' Onofrio Alberto. Stability properties of pulse vaccination strategy in SEIR epidemic model [ J ]. Mathematical Biosciences, 2002, 179(1) :57 -72.
  • 3马知恩,靳祯.总人口在变化的流行病动力学模型[J].华北工学院学报,2001,22(4):262-271. 被引量:28
  • 4Li Jianquan, Ma Zhien. Qualitative analyses of sisepidemic model with vaccination and varying total population size [ J ]. Math- Computer Modelling, 2002, 35 : 1235 - 1243.
  • 5靳祯,马知恩.具有连续和脉冲预防接种的SIRS传染病模型[J].华北工学院学报,2003,24(4):235-243. 被引量:47
  • 6Meng Xinzhu, Chen Lansun, Song Zhitao. The dynamics of a SEIR epidemic model concerning pulse vaccination strategy[ J]. Applied Mathematics and Computation, 2007, 28(9) : 1123 -1134.
  • 7刘开源,陈兰荪.一类具有垂直传染与脉冲免疫的SEIR传染病模型的全局分析[J].系统科学与数学,2010,30(3):323-333. 被引量:23
  • 8Van den Driessche P, Watmough J. A simple SIS epidemic model with backward bifurcation[ J]. Journal of Mathematical Biolo- gy, 2000, 40(6):525-540.
  • 9Van den Driessehe P, Watmough J. Epidemic solution and endemic catastrophes [ J ]. Fields Institute Communications, 2003, 36 ( 1 ) : 247 - 257.
  • 10Beretta E, Hara T, Ma Wanbiao, et al. Global asymptotic stability of an SIR epidemic model with distributed time delay [ J ]. Nonliner Analysis, 2001, 47(6) : 4107-4115.

二级参考文献40

  • 1马知恩 王稳地.种群动力学与流行病动力学[M].,2000..
  • 2布鲁克史密斯 皮特著 马永波译.未来的灾难: 瘟疫复活与人类生存之战[M].海口: 海南出版社,1999..
  • 3布鲁克史密斯·皮特著 马永波译.未来的灾难:瘟疫复活与人类生存之战[M].海口:海南出版社,1999..
  • 4D'Onofrio Alberto. Stability properties of pulse vaccination strategy in SEIR epidemic model. Mathematical Biosciences, 2002, 179(1): 57-72.
  • 5Li Michael Y, Smith Hall, Wang Liancheng. Global dynamics of an SEIR epidemic model with vertical transmission. SIAM Journal on Applied Mathematics, 2001, 62(1): 58-69.
  • 6Meng Xinzhu, Chen Lansun, Cheng Huidong. Two profitless delays for theSEIRS epidemic disease model with nonlinear incidence and pulse vaccination. Applied Mathematics and Computation, 2007, 186(1): 516-529.
  • 7Fine P M. Vectors and vertical transmission: An epidemiologic perspective. Annals of the New York Academy of Sciences, 1975, 266(11): 173-194.
  • 8Busenberg S, Cooke K L, Pozio M A. Analysis of a model of a vertically transmitted disease. Journal of Mathematical Biology, 1983, 17(3): 305-329.
  • 9Cook K L, Busenberg S N. Vertical transmission diseases: Nonlinear Phenomena in Mathematical Sciences. World Sciences, Singapore, 1982.
  • 10Meng Xinzhu, Chen Lansun. The dynamics of a new SIR epidemic model concerning pulse vaccination strategy. Applied Mathematics and Computation, 2008, 197(2): 582-597.

共引文献95

同被引文献8

  • 1SAMANTA G P , Ricardo G6mez Aiza. Analysis of a delayed epidemic model of diseases through droplet infection and direct contact with pulse vaccination[J]. Int J Dynam Control, 2015,3 (3) :1 -13.
  • 2SUNITA G, KULDEEP N. Pulse vaccination in SIRS epidemic model with non-monotonic incidence rate [ J ]. Chaos solution fractals, 2008, 35 (3) : 626 - 638.
  • 3GAO S J, CHEN L S, NIETO J J, et al. Analysis of a delayed epidemic model with pulse vaccination and saturation incidence [ J ]. Vaccine, 2006, 24 (35/36) : 6037 - 6045.
  • 4RUANS,WANG W. Dynamical behavior of an epidemical models with a nonlinear incidence rates [ J ]. Journal of differential equations, 1987, 25 (4): 359- 380.
  • 5ZHOU L H, FAN M. Dynamic of a SIR epidemic model with limited medical resources revisited [ J ]. Nonlinear analysis real world application, 2012, 13 ( 1 ) :312 - 324.
  • 6GAO S J, CHEN L S, TENG Z D. Pulse vaccination of an SEIR model with time delay[ J ]. Nonlinear analysis real world appli- cation, 2008, 9(2) :599 -607.
  • 7KUANG Y. Delay differential equations: with applications in population dynamics[ M ]. New York:Academic Press, 1993.
  • 8郑丽丽,王娟.一类具有非线性发生率的病毒动力学模型分析(英文)[J].信阳师范学院学报(自然科学版),2013,26(4):481-484. 被引量:3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部