期刊文献+

共和盆地增强型地热系统开采过程数值模拟 被引量:10

Numerical simulation of hot dry rock exploitation using enhanced geothermal systems in Gonghe Basin
原文传递
导出
摘要 干热岩资源是未来重要的清洁型能源,增强型地热系统(EGS)能够实现干热岩资源的开发利用。青海共和盆地干热岩资源储量巨大,可以作为EGS系统的靶区之一。水在热储层中的运移包含复杂的水-热耦合过程,不同的EGS运行方案对电厂发电能力有重要影响。本文基于共和盆地深部地质条件,建立了表征EGS系统水热特征的数值模型,研究了温度场、压力场的时空分布特征,并分析注入流体温度和循环流速两个可控因素对提热过程的影响。结果表明:在设计的运行方案(循环流速20 kg/s;注入温度60℃)下,最大提热速率可达11 MW,储层寿命为22年。注入温度每降低10℃,系统最大提热速率约增加10%,且对储层寿命没有明显影响;增加循环流速可以得到更大的热提取速率,但会减少储层寿命。 Hot dry rock, which will become one of the most important resources in the future, can be developed and utilized using enhanced geothermal systems(EGSs). Hot dry rock resources are abundant in Gonghe basin, Qinghai province. Complex waterthermal coupling processes occur during water flow in the reservoir, and the power generation capacity of power plants is dependent on the EGS operation scheme. Based on the deep geological conditions of Qiabuqia in Gonghe basin, we established a numerical model to characterize the hydrothermal features of EGS, researched the temporal and spatial distribution of the temperature field and pressure field, and analyzed the influence of injection temperature and flow rate on heat extraction rate. The results show that the maximum heat extraction rate reached 11 Mw under the base scheme(20kg/s, 60 o C), and the reservoir life was 22 years. The heat extraction rate will increase by about 10% with 10 o C increase of injection temperature, while the reservoir life remains the same.Increased flow rate will lead to a greater rate of heat extraction but shorter reservoir life.
出处 《科技导报》 CAS CSCD 北大核心 2015年第19期62-67,共6页 Science & Technology Review
基金 中国地质调查局地质调查项目(1212011220842) 中国地质科学院水文地质环境地质研究所基金项目(SK201408) 国家自然科学基金项目(4140020889)
关键词 增强型地热系统 数值模拟 水热耦合 enhanced geothermal systems numerical simulation water-thermal coupling
  • 相关文献

参考文献22

  • 1汪集旸,胡圣标,庞忠和,何丽娟,赵平,朱传庆,饶松,唐晓音,孔彦龙,罗璐,李卫卫.中国大陆干热岩地热资源潜力评估[J].科技导报,2012,30(32):25-31. 被引量:347
  • 2许天福,张延军,曾昭发,鲍新华.增强型地热系统(干热岩)开发技术进展[J].科技导报,2012,30(32):42-45. 被引量:142
  • 3蔺文静,刘志明,马峰,刘春雷,王贵玲.我国陆区干热岩资源潜力估算[J].地球学报,2012,33(5):807-811. 被引量:127
  • 4Massachusetts Institute of Technology. The future of geothermal energy: Impact of enhanced geothermal systems (EGS) on the United States in the 21st century[R]. MIT: Cambridge, MA, 2006.
  • 5Evans K. Enhanced/Engineered Geothermal System: An introduction with overviews of deep systems built and circulated to date[R]. Beijing: China Geothermal Development Forum, 2010: 395-418.
  • 6Pashkevich R I, Taskin V V. Numerical simulation of exploitation of supercfitical Enhanced Geothermal System[R]. California: Proceedings of thirty-fourth workshop on Geothermal Reservoir Engineering, 2009.
  • 7Baujard C, Bruel D. Numerical study of the impact of fluid density on the pressure distribution and stimulated volume in the Soultz HDR reservoir[J]. Geothermics, 2006, 35: 607-621.
  • 8PruessK. Enhanced geothermal system (EGS) using CO2 as working fluid-A novel approach for generating renewable energy with simultaneous sequestration of carbon[J]. Geothermics, 2006, 35: 351- 367.
  • 9Spycher N, Pruess K. A phase-partitioning model for CO2-brine mixtures at elevated temperatures and pressures: Application to CO2-enhanced geothermal systems[J]. Transport in Porous Media, 2010, 82: 173-196.
  • 10Borgia A, Prness K, Kneafsey T J, et al. Numerical simulation of salt precipitation in the fractures of a CO2-enhanced geothermal system[J]. Geothermics, 2012, 44: 13-22.

二级参考文献86

共引文献534

同被引文献182

引证文献10

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部