期刊文献+

一类Kirchhoff-Poisson方程解的存在性

Existence of Solutions for a Class of Kirchhoff-Poisson Equations
下载PDF
导出
摘要 本文应用Nehari流形方法研究一类Kirchhoff-Poisson方程解的存在性.在更一般的超四次增长性条件下,我们证明了基态解的存在性.如果非线性项是奇函数时,可以得到该问题无穷多个非平凡的解.在本文的假设条件下,Nehari流形可以不必是C1的. In this paper we study the existence of solutions for a class of Kirchhoff-Poisson equation by the Nehari manifold methods. Under a general 4 - superlinear condition on the nonlinearity , we prove the existence of a ground state solution. If the nonlinearity is odd with respect to the second variable, we also obtain the existence of infinitely many solutions. Under our assumptions the Nehari manifold does not need to be of class C1.
出处 《中央民族大学学报(自然科学版)》 2015年第3期21-27,共7页 Journal of Minzu University of China(Natural Sciences Edition)
基金 国家自然科学基金项目(No.11371212 No.10601063 No.11271386)
关键词 Kirchhoff-Poisson方程解 基态解 NEHARI流形 变分法 Kirchhoff-Poisson equation ground states Nehari manifold variational methods.
  • 相关文献

参考文献24

  • 1C J BATHAM. Ground state solution of a non-local boundary value problem [ J ]. Electronic Journal of Differential Equations, 2013,(257) : 1 -8.
  • 2X HE, W ZOU. Infinitely many positive solutions for Kirchhoff-type problems [ J ]. Nonlinear Anal, 2009, (70) : 1407 - 1414.
  • 3XING LIU, YIJING SUN. Multiple positive solutions for Kirchhoff type problems with singularity [ J]. Comm. Pure Appl. Anal, 2013,(12) :721 -733.
  • 4CHING YU CHEN, YUEH-CHENG KUO, TSUNG-FANG WU. The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions [ J ]. Journal of Differential Equations, 2011, ( 250 ) : 1876 - 1908.
  • 5G. KIRCHHOFF. Mechanik [ M ]. Leipzig: Teubner, 1883.
  • 6C 0 ALVES, MARCO. Existence of least energy nodal solution for a Schrodinger-Poisson system in bounded domain[ J]. Z. Angew Math Phys, 2014, (65) : 1153 -1166.
  • 7O SANCHEZ,J SOLER. Long-time dynamics of the Schrodinger-Poisson-Slater system[ Jl. J. Statitical Physics, 2004, (114) : 179 -204.
  • 8G SICILIANO. Multiple positive solutions for a Schrodinger-Poisson-Slater system I J]. J. Math. Anal Appl, 2010, ( 365 ) : 288 - 299.
  • 9V BENCI, D FORTUNATO. An eigenvalue problem for the Schrodinger-Maxwell equations[ J]. TopoL Meth. Nonl. Anal, 1998, ( 11 ) : 283 - 293.
  • 10P D' AVENIA. Non-radially symmetric solutions of nonlinear Schrodinger equation coupled with Maxwell equations [ J ]. Adv. Nonlinear Stud, 2002, (2) : 177 - 192.

二级参考文献20

  • 1Alves, C.O., Correa, F.J.S.A. Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl., 49:85-93 (2005).
  • 2Ambrosetti, A., Rabinowitz, P. Dual variational methods in critical point theory and applications. J. Funct. Anal., 14:349-381 (1973).
  • 3Ancona, P.D', Spagnolo, S. Global Solvability for the degenerate Kirchhoff equation with real analytic data. Invent. Math., 108:247-262 (1992).
  • 4Andrade, D., Ma, T.F. An operator equation suggested by a class of nonlinear stationary problems. Comm. Appl. Nonli. Anal., 4:65-71 (1997).
  • 5Arosio, A., Pannizi, S. On the well-posedness of the Kirchhoff string. Trans. Amer. Math. Soc., 348: 305-330 (1996).
  • 6Bernstein, S. Sur une classe d'equations fonctionnelles aux derivees partielles. Izv. Akad. Nauk SSSR Ser. Mat., 4:17-26 (1940).
  • 7Cavalcanti, M.M., Cavacanti, V.N., Soriano, J.A. Global existence and uniform decay rates for the Kirchhoff- Carrier equation with nonlinear dissipation. Adv. Diff. Eqns., 6:701-730 (2001).
  • 8Chipot, M., Lovat, B. Some remarks on nonlocal elliptic and parabolic problems. Nonlinear Analysis, 30: 4619-4627 (1997).
  • 9Chipot, M., Rodrigues, J.-F. On a class of nonlocal nonlinear elliptic problems. RAIRO Model. Math. Anal Numer., 26:447-467 (1992).
  • 10Jeajean, L. On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on R^N, Proc. Roy. Soc. Edinburgh Sect. A, 129:787-809 (1999).

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部