摘要
本文应用Nehari流形方法研究一类Kirchhoff-Poisson方程解的存在性.在更一般的超四次增长性条件下,我们证明了基态解的存在性.如果非线性项是奇函数时,可以得到该问题无穷多个非平凡的解.在本文的假设条件下,Nehari流形可以不必是C1的.
In this paper we study the existence of solutions for a class of Kirchhoff-Poisson equation by the Nehari manifold methods. Under a general 4 - superlinear condition on the nonlinearity , we prove the existence of a ground state solution. If the nonlinearity is odd with respect to the second variable, we also obtain the existence of infinitely many solutions. Under our assumptions the Nehari manifold does not need to be of class C1.
出处
《中央民族大学学报(自然科学版)》
2015年第3期21-27,共7页
Journal of Minzu University of China(Natural Sciences Edition)
基金
国家自然科学基金项目(No.11371212
No.10601063
No.11271386)