期刊文献+

The Generalized L_p-Mixed Affine Surface Area

The Generalized L_p-Mixed Affine Surface Area
原文传递
导出
摘要 Abstract In this article, we put forward the concept of the (i,j)-type Lp-mixed alpine surface area, such that the notion of Lp-affine surface area which be shown by Lutwak is its special cases. Furthermore, applying this concept, the Minkowski inequality for the (i, -p)-type Lp-mixed affine surface area and the extensions of the well-known Lp-Petty atone projection inequality are established, respectively. Besides, we give an affirmative answer for the generalized Lp-Winterniz monotonicity problem. Abstract In this article, we put forward the concept of the (i,j)-type Lp-mixed alpine surface area, such that the notion of Lp-affine surface area which be shown by Lutwak is its special cases. Furthermore, applying this concept, the Minkowski inequality for the (i, -p)-type Lp-mixed affine surface area and the extensions of the well-known Lp-Petty atone projection inequality are established, respectively. Besides, we give an affirmative answer for the generalized Lp-Winterniz monotonicity problem.
作者 Tong Yi MA
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第11期1775-1788,共14页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China(Grant Nos.11161019 and 11371224) the Science and Technology Plan of the Gansu Province(Grant No.145RJZG227)
关键词 Convex body star body i-th Lp-mixed curvature function i-th Lp-mixed curvature im-age (i j)-type Lp-mixed affine surface area Convex body, star body, i-th Lp-mixed curvature function, i-th Lp-mixed curvature im-age, (i, j)-type Lp-mixed affine surface area
  • 相关文献

参考文献1

二级参考文献33

  • 1Gardner, R. J.: Geometric Tomography, Cambridge Univ. Press, Cambridge, 1995.
  • 2Schneider, R.: Convex Bodies: The Brunn-Minkowski theory, Cambridge Univ. Press, Cambridge, 1993.
  • 3Bolker, E. D.: A class of convex bodies. Trans. Amer. Math. Soc., 145, 323-345 (1969).
  • 4Petty, C. M.: Isoperimetric problems, Proc. Conf. Convexty and Combinatorial Geometry (Univ. Oklahoma, 1971), University of Oklahoma, 26-41, 1972.
  • 5Schneider, R., Weil, W.: Zonoids and Related Topics, Convexity and its applications, Birkhauser, Basel, 296-317, 1983.
  • 6Martini, H.: Zur Bestimmung Konvexer Polytope durch the Inhalte ihrer Projection. Beitrage Zur Algebra und Geometrie, 18, 75-85 (1984).
  • 7Goodey, P. R., Weil, W.: Zonoids and Generalizations, Handbook of Convex Geometry, North-Holland, Amsterdam, 1297-1326, 1993.
  • 8Lutwak, E.: Inequalities for mixed projection bodies. Amer, Math. Soc., 339, 901-916 (1993).
  • 9Ludwig, M.: Projection bodies and valuations. Adv. Math., 172, 158-168 (2002).
  • 10Alexauder, R.: Zonoid theory and Hilbert's fouth problem. Geom. Dedicata, 28, 199-211 (1988).

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部