期刊文献+

Nonlinear tunneling through a strong rectangular barrier

Nonlinear tunneling through a strong rectangular barrier
下载PDF
导出
摘要 Nonlinear tunneling is investigated by analytically solving the one-dimensional Gross–Pitaevskii equation(GPE)with a strong rectangular potential barrier. With the help of analytical solutions of the GPE, which can be reduced to the solution of the linear case, we find that only the supersonic solution in the downstream has a linear counterpart. A critical nonlinearity is explored as an up limit, above which no nonlinear tunneling solution exists. Furthermore, the density solution of the critical nonlinearity as a function of the position has a step-like structure. Nonlinear tunneling is investigated by analytically solving the one-dimensional Gross–Pitaevskii equation(GPE)with a strong rectangular potential barrier. With the help of analytical solutions of the GPE, which can be reduced to the solution of the linear case, we find that only the supersonic solution in the downstream has a linear counterpart. A critical nonlinearity is explored as an up limit, above which no nonlinear tunneling solution exists. Furthermore, the density solution of the critical nonlinearity as a function of the position has a step-like structure.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第7期136-140,共5页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China(Grant Nos.11074155 and 11374197) the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT),China(Grant No.IRT13076) the National High Technology Research and Development Program of China(Grant No.2011AA010801)
关键词 nonlinear tunneling Gross–Pitaevskii equation(GPE) analytic solution nonlinear tunneling,Gross–Pitaevskii equation(GPE),analytic solution
  • 相关文献

参考文献32

  • 1Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198.
  • 2Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969.
  • 3Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995 Phys. Rev. Lett. 75 1687.
  • 4Engels P and Atherton C 2007 Phys. Rev. Lett. 99 160405.
  • 5Dries D, Pollack S E, Hitchcock J M and Hulet R G 2010 Phys. Rev. A 82 033603.
  • 6Raman C, K? hl M, Onofrio R, Durfee D S, Kuklewicz C E, Hadzibabic Z and Ketterle W 1999 Phys. Rev. Lett. 83 2502.
  • 7Onofrio R, Raman C, Vogels J M, Abo-Shaeer J R, Chikkatur A P and Ketterle W 2000 Phys. Rev. Lett. 85 2228.
  • 8Li W D 2006 Phys. Rev. A 74 063612.
  • 9Xin X F, Huang F, Xu Z J and Li H B 2014 Chin. Phys. B 23 070307.
  • 10Gou X Q, Meng H J, Wang W Y and Duan W S 2013 Chin. Phys. B 22 080307.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部