期刊文献+

Temperature-dependent bias-stress-induced electrical instability of amorphous indium-gallium-zinc-oxide thin-film transistors 被引量:2

Temperature-dependent bias-stress-induced electrical instability of amorphous indium-gallium-zinc-oxide thin-film transistors
下载PDF
导出
摘要 The time and temperature dependence of threshold voltage shift under positive-bias stress(PBS) and the following recovery process are investigated in amorphous indium-gallium-zinc-oxide(a-IGZO) thin-film transistors. It is found that the time dependence of threshold voltage shift can be well described by a stretched exponential equation in which the time constant τ is found to be temperature dependent. Based on Arrhenius plots, an average effective energy barrier Eτ stress= 0.72 eV for the PBS process and an average effective energy barrier Eτ recovery= 0.58 eV for the recovery process are extracted respectively. A charge trapping/detrapping model is used to explain the threshold voltage shift in both the PBS and the recovery process. The influence of gate bias stress on transistor performance is one of the most critical issues for practical device development. The time and temperature dependence of threshold voltage shift under positive-bias stress(PBS) and the following recovery process are investigated in amorphous indium-gallium-zinc-oxide(a-IGZO) thin-film transistors. It is found that the time dependence of threshold voltage shift can be well described by a stretched exponential equation in which the time constant τ is found to be temperature dependent. Based on Arrhenius plots, an average effective energy barrier Eτ stress= 0.72 eV for the PBS process and an average effective energy barrier Eτ recovery= 0.58 eV for the recovery process are extracted respectively. A charge trapping/detrapping model is used to explain the threshold voltage shift in both the PBS and the recovery process. The influence of gate bias stress on transistor performance is one of the most critical issues for practical device development.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第7期463-467,共5页 中国物理B(英文版)
基金 Project supported by the National Basic Research Program of China(Grant Nos.2011CB301900 and 2011CB922100) the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
关键词 amorphous indium gallium zinc oxide thin-film transistors positive bias stress trapping model interface states amorphous indium gallium zinc oxide,thin-film transistors,positive bias stress,trapping model,interface states
  • 相关文献

参考文献20

  • 1Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M and Hosono H 2004 Nature 432 488.
  • 2Tripathi A K, Smits E C P, van der Putten J B P H, van Neer M, Myny K, Nag M, Steudel S, Vicca P, O'Neill K, van Veenendaal E, Genoe J, Heremans P and Gelinck G H 2011 Appl. Phys. Lett. 98 162102.
  • 3Huang X M, Wu C F, Lu H, Ren F F, Chen D J, Zhang R and Zheng Y D 2013 Appl. Phys. Lett. 102 193505.
  • 4Miyase T, Watanabe K, Sakaguchi I, Ohashi N, Domen K, Nomura K, Hiramatsu H, Kumomi H, Hosono H and Kamiya T 2014 ECS Journal of Solid State Science and Technology 3 Q3085.
  • 5Jo K W and Cho W J 2014 Appl. Phys. Lett. 105 213505.
  • 6Huang X M, Wu C F, Lu H, Xu Q Y, Zhang R and Zheng Y D 2012 Chin. Phys. Lett. 29 067302.
  • 7Li X F, Xin E L, Shi J F, Chen L L, Li C Y and Zhang J H 2013 Acta Phys. Sin. 62 108503 (in Chinese).
  • 8Fortunato E M C, Barquinha P M C, Pimentel A C M B G, Goncalves A M F, Marques A J S, Pereira L M N and Martins R F P 2005 Adv. Mater. 17 590.
  • 9Lee J M, Cho I T, Lee J H and Kwon H I 2008 Appl. Phys. Lett. 93 093504.
  • 10Lopes M E, Gomes H L, Medeiros M C R, Barquinha P, Pereira L, Fortunato E, Martins R and Ferreira I 2009 Appl. Phys. Lett. 95 063502.

同被引文献13

  • 1施敏,伍国钰.半导体器件物理[M].西安:西安交通大学出版社.2008:547-549.
  • 2刘恩科,朱秉升,罗晋生.半导体物理学[M].北京:电子工业出版社,2011.
  • 3NOMURA K, HIROMICHI O, AKIHIRO T, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors[J]. Nature, 2004, 432(7016):488-492.
  • 4TSUBUKU M, WATANABE R, ISHIHARA N, et al. 16.1:Negative-Bias photo degradation mechanism in InGaZnO TFT[J]. Sid Symposium Digest of Technical Papers, 2013, 44(1):166-169.
  • 5KAMIYA T, NOMURA K, HOSONO H. TOPICAL REVIEW:Present status of amorphous In-Ga-Zn-O thin-film transistors[J]. Science and Technology of Advanced Materials, 2010, 11(4):044305.
  • 6KANG D H, LIM H, KIM C, et al. Amorphous gallium indium zinc oxide thin film transistors:Sensitive to oxygen molecules[J]. Applied Physics Letters, 2007, 90(19):192101.
  • 7PARK J S, JEONG J K, CHUNG H J, et al. Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water[J]. Applied Physics Letters, 2008, 92(7):072104.
  • 8JEONG J K, YANG H W, JEONG J H, et al. Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors[J]. Applied Physics Letters, 2008, 93(12):123508.
  • 9NOMURA K, KAMIYA T, OHTA H, et al. Defect passivation and homogenization of amorphous oxide thin-film transistor by wet O2 annealing[J]. Applied Physics Letters, 2008, 93(19):192107.
  • 10SZE S M, NG K K. Physics of Semiconductor Devices[M]. GENG L, ZHANG R Z, trans. Xi'an:Xi'an Jiaotong University Press, 2008:238-239. (in Chinese).

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部