期刊文献+

胶囊检测技术的研究现状 被引量:1

State-of-the-art of Capsule Shape Detection Technology
下载PDF
导出
摘要 随着图像处理技术在医学领域的广泛应用和自动化检测的高速发展,传统人工胶囊检测技术呈现出机械化、自动化的发展趋势。为促进胶囊检测技术的应用和研发,系统综述了胶囊检测技术的国内外现状,总结出了10种关键的胶囊检测技术。 With the wide application of image processing technology in the medical field,and the rapid development of automatie detection,the traditional capsule shape detection techniques presents a tendency of mechanization and automation. To enhance further application and investigation into the technology of capsule shape detection,this paper reviews the current situation of capsule shape detection at home and abroad,and summarizes 10 kinds of critical capsule shape detection methods.
机构地区 中国计量学院
出处 《机械工程师》 2015年第10期184-186,共3页 Mechanical Engineer
基金 浙江省大学生科研创新活动计划资助项目(2014R409047) 浙江省分析测试科技计划项目(2013C37107)
关键词 图像处理 胶囊检测 自动化 image processing capsules shape detection automation
  • 相关文献

参考文献16

  • 1冯珊珊,陈树越.基于图像分析的真假药胶囊颗粒识别方法研究[J].传感器与微系统,2008,27(8):54-56. 被引量:11
  • 2KEKRE H B,MISHRA D,VARUN D. Detection of defective pharmaceutical capsules and its types of defect using image processing techniques [C]//Proc. of 2014 International Conference on Circuit,Power and Computing Technologies (ICCPCT) ,2014:1190-1195.
  • 3LIU Feng,LIU Xiaoyu,CHEN Yi. An efficient detection method for rare colored capsule based on RGB and HSV color space[C] //Proc. of 2014 IEEE International Conference on Granular Computing (GrC),2014: 175-178.
  • 4ISLAM M J,AHMADI M,SID-AHMED M A. Image processing techniques for quality inspection of gelatin capsules in pharmaceutical applications [ C ]//Proe. of International Conference on Control, Automation, Robotics and Vision, 2008: 862-867.
  • 5KARLOFF A C,SCOTT N E,MUSCEDERE R. A flexible design for a cost effective,high throughput inspection system for pharmaceutical capsules [C]//Proc. of IEEE International Conference on Industrial Technology,2008: 1-4.
  • 6ISLAM M J,BASALAMAH S,AHMADI M,et al. Capsule image segmentation in pharmaceutical applications using edge-based techniques [C]//Proc. of IEEE International Conference on Electro/Information Technology (EIT), 2011: 1-5.
  • 7WANG Huanhuan,LIU Xiaoyu,CHEN Yi. Detection of capsule foreign matter defect based on BP neural network [ C ]//Proc. of 2014 IEEE International Conference on Granular Computing (GRC),2014:325-328.
  • 8陈汗青,万艳玲,王国刚.数字图像处理技术研究进展[J].工业控制计算机,2013,26(1):72-74. 被引量:57
  • 9程巧玲.图像处理技术近期发展及应用[J].信息与电脑(理论版),2013,0(6):203-204. 被引量:1
  • 10ZHU Zhengtao,YU Xiongyi,HUANG Liuqian,et al. Fast Capsule Image Segmentation Based on Linear Region Growing [J]. Computer Science and Automation Engineering (CSAE), 2011: 99-103.

二级参考文献58

共引文献81

同被引文献6

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部