期刊文献+

基于格子Boltzmann方法和有限体积法的方柱绕流特性对比分析 被引量:1

A Comparative Analysis of Lattice Boltzmann and Finite Volume Methods for Flow over a Square Cylinder
下载PDF
导出
摘要 基于黏性流体理论,分别采用格子Boltzmann方法(LBM)和有限体积法(FVM)建立了黏性流场中方柱绕流模型。探究LBM在非光滑曲面钝体绕流方面的应用;并结合FVM进行对比分析。在FVM模型中,采用局部加密的方法对钝体边界进行处理,而在LBM模型中,除了传统的Half-way边界处理方法,还结合了拐角边界处理方法。为获得较好的可对比数据,根据已发表文献中的理论及UDF编译码技术,分别对两模型的进出口边界条件进行了讨论和设置。对比分析了两模型下的速度云图以及获得的升、阻力系数,Strouhal数。结果发现方柱上游压力不受涡脱落影响,雷诺数对其影响也较小;两种方法下的速度、无量纲参数吻合较好;但两者最适进出口边界不同,且相同条件下,LBM比FVM数值模拟能更快达到稳定状态。 Based on the theory of viscous fluid,the flow around square cylinder was modeled using two methods of lattice Boltzmann and finite volume. The method of LBM was discussed about its application and compared with FVM. Boundary conditions was processed with local mesh refinement in FVM model,but methods with Half-way and corner treatment in LBM model. In order to get credible data,two types' boundary conditions of inlet and outlet were discussed and set separately according to theory and UDF program. The velocity contour,lift and drag coefficients and Strouhal number of two models are analyzed comparatively. Results found upstream pressure free from vortex shedding,little relations with Reynolds. Two different methods had a great agreement in velocity and non-dimensional parameters,but fittest inlet and outlet boundary. And LBM simulation can achieve stable state very quickly at the same condition.
出处 《科学技术与工程》 北大核心 2015年第28期96-102,共7页 Science Technology and Engineering
基金 新世纪优秀人才支持计划项目(NCET100054) 国防基础科研计划(B2420133001)资助
关键词 方柱绕流 格子BOLTZMANN方法 有限体积法 对比分析 flow around square cylinder;lattice Boltzmann method;finite volume method;comparative analysis
  • 相关文献

参考文献16

  • 1Pavlov A N, Sazhin S S, Fedorenko R P, et al. A conservative finite difference method and its application for the analysis of a transient flow around a square prism. International Journal of Numerical Meth- ods for Heat & Fluid Flow, 2000; 10(1) : 6-47.
  • 2Perumal D A, Dass A K. Multiplicity of steady solutions in two-di- mensional lid-driven cavity flows by lattice Boltzmann method. Com- puters & Mathematics with Applications, 2011; 61 (12): 3711 -3721.
  • 3Sohankar A, Norberg C, Davidson L. Low-Reynolds-number flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary condition. International Journal for Numerical Methods in Fluids, 1998; 26( 1 ) : 39-56.
  • 4Geller S, Krafczyk M, Tlke J, et al. Benchmark computations based on lattice-Boltzmann, finite element and finite volume methods for laminar flows. Computers & Fluids, 2006 ; 35 (8) : 888-897.
  • 5刘天成,葛耀君,曹丰产,刘高.基于Lattice Boltzmann方法的方柱绕流模拟[J].同济大学学报(自然科学版),2008,36(8):1028-1033. 被引量:8
  • 6Perumal D A, Kumar G V S, Dass A K. Numerical simulation of vis- cous flow over a square cylinder using lattice Boltzmann method. IS- RN Mathematical Physics, 2012 ; 2012 : 1-16.
  • 7Kumar G V S, Perumal D A, Dass A K. Numerical simulation of vis- cous flow over a circular cylinder using lattice Boltzmann method. Proceedings of the 37th National & 4th International Conference on Fluid Mechanics and Fluid Power, India: liT Madras, 2010 : 16-18.
  • 8Regulski W, Szumbarski J. Numerical simulation of confined flows past obstacles-the comparative study of lattice Boltzmann and spectral element methods. Archives of Mechanics, 2012; 64(4): 423-456.
  • 9陈静涛.圆柱绕流的二维数值模拟和尾迹分析[J].计算机辅助工程,2013,22(6):1-6. 被引量:9
  • 10Hou S, Zou Q, Chen S, et al. Simulation of cavity flow by the lat- tice Bohzmann method. Journal of Computational Physics, 1995; 118(2) : 329-347.

二级参考文献17

  • 1Chen H, Kandasarny S, Orszag S, et al. Extended Boltzmann kinetic equation for turbulent flows [ J ]. Science, 2003,301 : 633.
  • 2Chen H, Chen S, Matthaeus W H. Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method [ J ]. Phys Rev A, 1992,45 : 5339.
  • 3He X, Luo L S. Lattice Boltzmann model for the incompressible Navier-Stokes equation [ J ]. J Stat Phys, 1997,88 : 927.
  • 4McNamara G R, Zanetti G. Use of the Bohzmann equation to simulate Lattice Automata [J]. Phys Rev Let, 1988,61:2332.
  • 5Chen S, Doolen G D. Lattice Boltzmann method for fluid flows [J]. Ann Rev Fluid Mech, 1998,30:329.
  • 6Yu D,Mei R,Luo L S,et al. Viscous flow computations with the method of lattice Boltzmann equation [J ]. Progress in Aerospace Sciences, 2003,39 : 329.
  • 7Ladd A. Numerical simulation of particular suspensions via a discretized Boltzmann equation: part 1 theoretical foundation [J]. J Fluid Meeh, 1994,271:258.
  • 8Guo Z, Zheng C, Shi B. An extrapolation method for boundary conditions in Lattice Boltzmann method [ J ]. Phys Fluids, 2002 (6) :2007.
  • 9Skordos P A. Initial and boundary conditions for the Lattice Boltzmann method [J]. Phys Rev E, 1992,48:4823.
  • 10Breuer M, Bemsdorf I, Zeiser T, et al. Accurate computations of the laminar flow past a square cylinder based on two different methods : Lattice-Boltzmarm and finite-volume [ J ]. Int J Heat and Fluid Flow,2000(2) : 186.

共引文献15

同被引文献13

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部