期刊文献+

Quadrupolar matter-wave soliton in two-dimensional free space 被引量:5

Quadrupolar matter-wave soliton in two-dimensional free space
原文传递
导出
摘要 We study two-dimensional (2D) matter-wave solitons in the mean-field models formed by electric quadrupole particles with long-range quadrupoleluadrupole interaction (QQI) in 2D free space. The existence of 2D matter-wave solitons in the free space was predicted using the 2D Gross Pitaevskii Equation (GPE). We find that the QQI solitoms have a higher mass (smaller size and higher intensity) and stronger anisotropy than the dipol^dipole interaction (DDI) solitons under the same environmental parameters. Anisotropic solitomsoliton interaction between two identical QQI solitons in 2D free space is studied. Moreover, stable anisotropic dipole solitons are observed, to our knowledge, for the first time in 2D free space under anisotropic nonlocal cubic nonlinearity. We study two-dimensional (2D) matter-wave solitons in the mean-field models formed by electric quadrupole particles with long-range quadrupoleluadrupole interaction (QQI) in 2D free space. The existence of 2D matter-wave solitons in the free space was predicted using the 2D Gross Pitaevskii Equation (GPE). We find that the QQI solitoms have a higher mass (smaller size and higher intensity) and stronger anisotropy than the dipol^dipole interaction (DDI) solitons under the same environmental parameters. Anisotropic solitomsoliton interaction between two identical QQI solitons in 2D free space is studied. Moreover, stable anisotropic dipole solitons are observed, to our knowledge, for the first time in 2D free space under anisotropic nonlocal cubic nonlinearity.
出处 《Frontiers of physics》 SCIE CSCD 2015年第4期119-125,共7页 物理学前沿(英文版)
关键词 2D matter-wave solitons quadrupole-quadrupole interaction anisotropy soliton-soliton interaction dipole solitons 2D matter-wave solitons, quadrupole-quadrupole interaction, anisotropy soliton-soliton interaction, dipole solitons
  • 相关文献

参考文献4

二级参考文献212

  • 1O. Morsch and M. Oberthaler, Dynamics of Bose-Einstein condensates in optical lattices, Rev. Mod. Phys., 2006, 78(1): 179, and references theirin.
  • 2P. W. Anderson, Concepts in Solid: Lectures on the Theory of Solds, Singapore: World Scientific, 1997.
  • 3V. S. Letokhov and V. G. Minogin, Quantum motions of ul- tracooled atoms in resonant laser field, Phys. Lett. A, 1997, 61(6): 370.
  • 4M. Wilkens, E. Schumacher, and P. Meystre, Band theory of a common model of atom optics, Phys. Rev. A, 1991, 44(5): 3130.
  • 5Q. Niu, X. G. Zhao, G. A. Georgakis, and M. G. Raizen, Atomic Landau-Zener tunneling and Wannier-Stark ladders in optical potentials, Phys. Rev. Left, 1996, 76(24): 4504.
  • 6M. B. Dahan, E. Peik, J. Reichel, Y. Castin, and C. San lomon, Bloch oscillations of atoms in an optical potential Phys. Rev. Lett., 1996, 76(24): 4508.
  • 7S. R. Wilkinson, C. F. Bharucha, K. W. Madison, Qian Niu, and M. G. Raizen, Observation of atomic Wannier-Stark ladders in an accelerating optical potential, Phys. Rev. Lett., 1996, 76(24): 4512.
  • 8B. P. Anderson, and M. A. Kasevich, Macroscopic quan- tum interference from atomic tunnel arrays, Science, 1998, 282(5394): 1686.
  • 9O. Morsch, J. H. Miiller, M. Cristiani, D. Ciampini, and E. Arimondo, Bloch oscillations and mean-field effects of Bose- Einstein condensates in 1D optical lattices, Phys. Rev. Lett., 2001, 87(14): 140402.
  • 10S. Burger, F. S. Cataliotti, C. Fort, F. Minardi, M. Inguscio, M. L. Chiofalo, and M. P. Tosi, Superfluid and dissipative dynamics of a Bose-Einstein condensate in a periodic optical potential, Phys. Rev. Left., 2001, 86(20): 4447.

共引文献13

同被引文献18

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部