On Wiener and terminal Wiener index of graphs
On Wiener and terminal Wiener index of graphs
摘要
The Wiener index is a topological index defined as the sum of distances between all pairs of vertices in a graph. It was introduced as a structural descriptor for molecular graphs of alkanes, which are trees with vertex degrees of four at the most. The terminal Wiener index is defined as the sum of distances between all pairs of pendent vertices in a graph. In this paper we investigate Wiener and terminal Wiener for graphs derived from certain operations.
参考文献10
-
1D. Bonchev and D. H. Rouvray, Chemical Graph Theory, Introduction and Funda- mentals Mathematical Chemistry Series (Abacus Press/Gordon and Breach Science Publishers 1991).
-
2A. A. Dobrynin, R. Entringer and I. Gutman, Wiener index for trees: Theory and applications, Acta Appl. Math. 66 (2001) 211.
-
3M. Fischermann, A. Hoffmann, D. Rautenbach, L. A. Szekely and L. Volkmann, Wiener index versus maximum degree in trees, Discrete Appl. Math. 122(1-3) (2002) 127-137.
-
4I. Gutman, B. Fhtula and M. Petrovic, Terminal Wiener index, J. Math. Chem. 46 (2009) 522-531.
-
5N. Trinajstic, Chemical Graph Theory, Vol. 2 (CRC Press, Boca Raton, FL, 1983), pp. 115-116.
-
6H. Wang, The extremal values of the Wiener index of a tree with given degree sequence, preprint (2007), arXiv: 0709.1679vl [math.Col.
-
7H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17-20.
-
8S. Yamaguchi, A note on Wiener index, MATCH Commun. Math. Comput. Chem. 60 (2008) 645-648.
-
9X.-D. Zhang, Y. Liu and M.-X. Han, Maximum Wiener index of trees with given degree sequences, MATCH Commun. Math. Comput. Chem. 64 (2010) 661-682.
-
10Z. Du and B. Zhou, Minimum Wiener indices of trees and unicyclic graphs of given matching number, MATCH Commun. Math. Comput. Chem. 63 (2009) 101-112.
-
1秦永真,王舟浩.烷烃析光率与维纳指数关系的研究[J].武汉化工,1989(4):9-10.
-
2秦永真,王舟浩.维纳指数用于寻找烷烃拓扑结构和折光率的关系的研究[J].化学通报,1991(11):38-40. 被引量:1
-
3袁晓燕,康继军,黄莺,李志良.利用维纳指数估计与预测分子性质与分子间力[J].吉首大学学报,1997,18(1):15-21.
-
4陈桂珍,张树棠,黄正国.一种新拓扑指数X用于烯烃的QSAR研究[J].唐山师范学院学报,2009,31(2):11-15. 被引量:7
-
5詹国强.分配放大器特殊故障维修一例[J].中国有线电视,2008(11):1230-1230.
-
6刘文钦,余进.饱和烷烃结构与沸点关系的拓扑化学研究[J].四川教育学院学报,2001,17(7):71-72.
-
7杨本义,马爱飞.回传NPR的测试及应用分析[J].无线互联科技,2012,9(7):88-89.
-
8Sie Tiong Ha,Kok Leei Foo,Hong Cheu Lin,Masato M.Ito,Kazuma Abe,Kenji Kunbo,S.Sreehari Sastry.Mesomorphic behavior of new benzothiazole liquid crystals having Schiff base linker and terminal methyl group[J].Chinese Chemical Letters,2012,23(7):761-764. 被引量:2
-
9黄道昌,何小川.利用维纳指数估计和预测烷烃偏心因子[J].长沙水电师院学报(自然科学版),2001,16(2):95-96.
-
10郑明明,吴启勋.分子连接性指数用于低沸点烷烃Kovats指数的相关性研究[J].西南民族大学学报(自然科学版),2007,33(4):824-826.