期刊文献+

自然灾害动态风险分析的一个虚拟案例 被引量:5

A Virtual Case Study to Analyze Dynamic Risks of Natural Disasters
下载PDF
导出
摘要 以浙江历史上遭受的台风经济损失为背景,虚拟了一个以月份变化和不同登陆情况为基础的台风动态风险案例,用源于概率风险模型的动态风险分析模型,并采用正态扩散方法处理虚拟案例数据,对其进行了分析。主要工作是估计不同月份条件下台风强度的概率分布,估计风险承受体在不同强度的台风和不同登陆情况下的损失,并由条件概率分布和损失矩阵耦合成期望值意义上的动态风险。非动态风险分析只能给出年内单一风险值,而动态风险分析能提供更多的信息。讨论概率风险的系统误差问题,以及智联网用于动态风险分析的问题。 In this paper,with the economic loss caused by typhoons occurred in Zhejiang,China,as the background,a virtual case of typhoon dynamic risk is given,in which the time and landing sites of the typhoons are different. Employed a model for dynamic risk analysis derived from a probabilistic risk model,and using the normal diffusion method to process data,we study the case. The main works in the study are to estimate a probability distribution of typhoon strength under conditions of different months,and to estimate loss of a risk-bearing body with respect to different strength typhoons and different landing situations. Then,coupling of the conditional probability distribution and the loss matrix,we calculate the dynamic risk in sense of expected loss. Non-dynamic risk analysis can only give a single risk value during the year,while the dynamic risk analysis can provide more information.This paper also discusses the system error of probability risks,and suggests exploring the Internet of intelligences for dynamic risk analysis.
作者 黄崇福
出处 《灾害学》 CSCD 2015年第4期1-11,共11页 Journal of Catastrophology
基金 国家重大科学研究计划("九七三")"全球变化与环境风险演变过程与综合评估模型"(2012CB955402)
关键词 动态风险 台风 正态扩散 条件概率分布 风险承受体 损失矩阵 智联网 dynamic risk typhoon normal diffusion conditional probability distribution risk-bearing body loss matrix Internet of Intelligences
  • 相关文献

参考文献19

  • 1韩广才,张耀良.一类广义力学系统的能量方程[J].哈尔滨工程大学学报,2001,22(4):69-71. 被引量:5
  • 2Cox L A Jr. Confronting deep uncertainties in risk analysis [ J ]. Risk Analysis, 2012, 32(10) : 1607 - 1629.
  • 3Borsuk M E, Tomassini L. Uncertainty, imprecision, and the pre- cautionary principle in climate change assessment [ J ]. Water Sci- ence and Technology, 2005, 52(6) : 213 -25.
  • 4Cordier A1, Gohin J, Krebs S, Rault A. Dynamic impacts of a catastrophic production event: the foot-and-mouth disease case [J]. Risk Analysis, 2013, 33(3) : 480 -492.
  • 5Mitkus R J, King D B, Walderhaug M O, et al. A comparative pharmacokinetic estimate of mercury in U. S. infants following yearly exposures to inactivated influenza vaccines containing thi- merosal [J]. Risk Analysis, 2014, 34(4): 735-750.
  • 6Slob W, Bakker M I, Biesebeek J D, et al. Exploring the uncer- tainties in cancer risk assessment using the integrated probabilistic risk assessment (IPRA) approach [ J]. Risk Analysis, 2014, 34 (8) : 1401 -1422.
  • 7Marz R. Fine decouplings of regular differential algebraic equa- tions [J]. Results in Mathematics, 2004, 46 (1/2) : 57 -72.
  • 8Diethelm K. An algorithm for the numerical solution of differential equations of fractional order [ J ]. Electronic Transactions on Nu- merical Analysis, 1997, 5( 1 ) : 1 -6.
  • 9Beylkin G. On the representation of operators in bases of compact- ly supported wavelets [ J]. SIAM Journal on Numerical Analysis, 1992, 6(6) : 1716 - 1740.
  • 10Marinescu D C. Cloud computing: Theory and practice [ M ]. San Francisco: Morgan Kaufmann Publishers Inc. , 2013.

二级参考文献66

共引文献73

同被引文献49

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部