期刊文献+

基于图像自适应融合的超分辨率重建算法 被引量:1

Image super-resolution reconstruction algorithm based on adaptive patch fusion
下载PDF
导出
摘要 本文提出了一种基于图像块自适应融合的序列图像超分辨率重建算法。算法使用低分辨率序列图像中的互补信息重建生成高分辨率图像。为了保证重建初始估计尽可能接近真实场景,配准后的序列图像按照图像块梯度信息自适应的融合生成高分辨率初始估计图像。算法采用误差反向投影的方法对高分辨率图像迭代校正,生成超分辨率重建最终结果。实验证明,本文提出的超分辨率重建算法能够在增加图像细节信息的同时重建出更加自然真实的高分辨率图像。 In this paper,we propose a super-resolution reconstruction algorithm based on adaptive patch fusion. This algorithm well fulfills its intention to reconstruct high-resolution image from observed low-resolution image sequence. The observed low-resolution images are aligned by SURF feature-point registration in the first place,and are adaptively fused into a single high-resolution image based on gradient prior subsequently. Image fusion process is conducted in a patch-wise manner which ensures that utmost local prior-detail is incorporated in the initial guess of high-resolution image. Our algorithm further incorporates an iterative error back projection mechanism to optimize the high-resolution image estimation. Experimentsshow that our patch based adaptive fusion mechanism enhances image details naturally and reconstructs high resolution images of space objects better than state-of-the-art methods.
出处 《中国体视学与图像分析》 2015年第2期99-107,共9页 Chinese Journal of Stereology and Image Analysis
基金 国家自然科学基金(编号61071137 61371134)
关键词 超分辨率重建 序列图像配准 图像梯度 图像块融合 super-resolution reconstruction sequential-image registration image gradient patch fusion
  • 相关文献

参考文献16

  • 1Sung Cheol Park, Min Kyu Park, Moon Gi Kang. Super- resolution image reconstruction: a technical overview [ J]. IEEE Signal Processing Magazine, May 2003: 21 - 36.
  • 2Tsai R Y, Thomas Huang. Multiple frame image restora- tion and registration [ J ]. Advances in Computer Vision and Image Processing, Greenwich, CT: JAI Press lnc 1984:317 -339.
  • 3唐智飞,禹晶,肖创柏.基于双边滤波的POCS超分辨率图像序列重建算法[J].中国体视学与图像分析,2011,16(1):84-88. 被引量:4
  • 4Salari E, Gerchberg B. Super-resolution using an en- hanced Papoulis-Gerchberg cessing, IET, 2012, 6(7): algorithm [ J ]. Image Pro- 959 - 965.
  • 5Yang J, Wright J, Huang T, et al. Image super-resolu- tion as sparse representation of raw image patches [ C ]. Conference on Computer Vision and Pattern Recognition, IEEE, 2008 : 1 - 8.
  • 6Yu Z, Yanning Z, Alan L, et al. Single image super- resolution using deformable patches [ C ]. Computer Vi- sion and Pattern Recognition, 2014 : 2917 - 2924.
  • 7Zhang K, Tao D, Gao X, et al. Learning multiple linear mappings for efficient single image super-resolution[ J ]. Image Processing IEEE Transactions, 2015, 24 ( 3 ) : 846 - 861.
  • 8Bay H, Ess A, Tuytelaars T, et al. Speeded-up robust features[ J]. Computer Vision & Image Understanding, 2008, 110(3) :346 -359.
  • 9Fisher M A, Bolles R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography [ J ]. Comm of the Acm, 1981, 24(6) :726 -740.
  • 10Irani M, Peleg S. Super resolution from image sequence[ C ]. International Conference on Pattern Recognition, 1990:115 - 120.

二级参考文献26

  • 1孟庆武,柏秀云.单帧低分辨率图像的SFMAP高分辨率重建算法[J].计算机科学,2004,31(8):147-150. 被引量:3
  • 2沈海.一种基于类推思想的图像分割方法[J].计算机工程与应用,2006,42(9):45-47. 被引量:2
  • 3范冲,龚健雅,朱建军.一种基于去混叠影像配准方法的POCS超分辨率序列图像重建[J].测绘学报,2006,35(4):358-363. 被引量:12
  • 4Tsai R Y, Huang T S. Multiframe image restoration and registration[J ]. Advances in Computer Vision and Image Processing, 1984,1:317 - 339.
  • 5Stark G, Oskoui P. High- resolution image recovery from image plane arrays, using convex projection[J ]. Journal of Optical Sodery of Americ(aSeries A), 1989,6(11 ) : 1715 - 1726.
  • 6Sezan M I,Stark H. Image restoration by the method of convex projections: part 2 - applications, and numerical results [J]. IEEE Transactions on Medical Imaging, 1982(12) :95 - 101.
  • 7Schuhz R R, Stevenson R L. A Bayesian approach to image expansion for improved definition[ J ]. IEEE Transactions on Image Processing, 1994 (33) : 233 - 242.
  • 8Borman S, Stevenson R L. Simultaneous multifrarne MAP super - resolution video enhancement using spatiotemporal priors [C]//IEEE Int. Conf. Image Processing. Kobe, Japan: [s. n. ], 1999:469 - 473.
  • 9Hertzrnann A, Jambs C E, Oliver N, et al. Image analogies [C] // In: Proe. of the 28th Annual Conf. on Computer Graphics and Interactive Techniques SIC;GRAPH 2001. LA California- ACM Press, 2001:327-340.
  • 10Ogawa T, Haseyama M. Semantic image retrieval based on POCS algorithm using kernel PCA and its performance verification[ C ]//ISCE09, IEEE 13^th Internatioinal Symposium on Consumer Electronics. Kyoto: 2009:582 - 583.

共引文献7

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部